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CHAPTER 1

GENERAL OBSERVATIONS

Our understanding of the Universe has vastly improved in the last century. Edwin
Hubble’s observation of distant galaxies established in 1929 that the Universe is
expanding. The globally homogeneous and isotropic Friedmann-Robertson-Walker
(FRW) metric, which is one of the solutions of Einstein’s theory of General Relativity,
was very successful in explaining our then observed Universe, and became known
as the Standard Model of cosmology. Even though the Universe was found to be
expanding it was firmly believed that the rate of expansion would be decreasing
due to the effect of gravity. However at the end of the last century it was found
that the earlier notion was not true and the Universe is in fact in an accelerated
expansion. This is one of the most striking result in modern cosmology and it
was first reported in Refs. [1]. Over the course of the past decade evidence for
this result has been steadily growing. Although it may not have come as such a
surprise to a few theorists who were at that time considering the interplay between
a number of different types of observations, for the majority it came as something
of a bombshell. The Universe is not only expanding, it is accelerating. The results
first published in Refs. [1] have caused a significant change in the way we have
started thinking about the universe.

The nature of the physical mechanism driving this acceleration is yet unclear,
though there exists an increasingly wide variety of approaches that could theor-
etically account for the present acceleration. The component of the Universe that
is responsible for this expansion is required to have negative pressure, something
that is not possible with ordinary matter, is believed to be very homogeneous and
is not known to interact through any of the fundamental forces other than gravity.
Because of the unknown nature of this component it has been innovatively named
“Dark Energy”. Observations have categorized the energy density of the present
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universe to consist of approximately 23% dark matter, which clusters and drives
the formation of the large scale structure in the universe, and 73% dark energy,
which drives the late-time acceleration of the Universe, with the remaining 5% or
so being comprised of matter and radiation (see [2]).

The most simple explanation for the late-time acceleration is provided by a
cosmological constant, and is consistent with several important observations such
as the redshift of distant supernovae, the power spectrum of the Cosmic Microwave
Background (CMB), and the distribution of the large scale structure. However, the
introduction of the cosmological constant into our description of the Universe is
quite problematic. The current energy density of the cosmological constant, as
deduced from observations, is about 10−48 (GeV)4, which is some 120 orders of
magnitude smaller than theoretical expectations. If the energy density were even
slightly larger, the repulsive force would cause the Universe to expand too fast
so that there would not be enough time for the formation of galaxies or other
gravitationally bound systems. This is called the cosmological constant problem.
Secondly it raises the question of why the value of the cosmological constant was
so finely tuned that it came to dominate in a narrow window of time in the present
Universe and cause the observed accelerated expansion. This problem is referred
as the cosmic coincidence problem.

Since the cosmological constant has quite a few problems associated with it
[3], so despite its simplicity of approach to explain dark energy driven late-time
acceleration a number of alternative routes have been proposed [4]. A few notable
examples in this regard are:

• Quintessence models [5] which invoke an evolving canonical scalar field with
a potential (effectively providing an inflaton for today) and makes use of the
scaling properties and tracker nature of such scalar fields evolving in the
presence of other background matter fields.

• A scalar field with a non-canonical kinetic term, known as k-essence [6, 7, 8,
9, 10, 11] based on an earlier work known as k-inflation [12].

• Modified gravity arising out of both string motivated or more generally Gen-
eral Relativity modified [13] actions which both have the effect of introducing
large length scale corrections and modifying the late-time evolution of the
Universe.
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• Chaplygin gases which attempt to unify dark energy and dark matter under
one umbrella by allowing for a fluid with an equation of state which evolves
between the two [14].

• The String Landscape arising from the multiple numbers of vacua that exist
when the string moduli are made stable as non-abelian fluxes are turned on
[15].

• The phenomenon of Cosmological Backreaction whereby the feedback of
non-linearities into the evolution equations can significantly change the back-
ground evolution and lead to acceleration at late times without introducing
any new matter.

• Tachyons arising in string theory [16], Phantom Dark Energy [17] and Ghost
Condensates [18], holographic dark energy models [19] and causal sets in
the context of Quantum Gravity [20].

These possibilities and more have been discussed in the literature. Since our current
observational data are quite favourable towards the presence of a cosmological
constant type term today, therefore any dynamically evolving contribution must
resemble a cosmological constant today. If we are to see evidence of dynamics in
the dark energy equation of state, we have to probe back in time. A number of
routes in that direction have been suggested and plans are underway to extend this
even further. On the other hand a minority of cosmologists have argued forcefully
that the majority of the data as it presently stands can be interpreted without re-
course to a cosmological constant, rather we can explain it through other physical
processes, for example by relaxing the hypothesis that the fluctuation spectrum
can be described by a single power law [21]. Perhaps we do not yet fully under-
stand how Type Ia supernovae evolve and we may have to eventually think of
alternative explanations. Although this might well be the case, there is a growing
body of evidence for the presence of a cosmological constant which does not rely
on the supernova data to support it (see Ref. [22]). However, the more accepted
interpretation of the data is that it is becoming clear that consistency between
the anisotropies in the CMB [23, 24] and LSS [25] observations imply we live
in a Universe where the energy density is dominated by a cosmological constant
type contribution. An impressive aspect of this consistency check is the fact that
the physics associated with each epoch is completely different and of course it oc-
curs on different time scales. It appears that consistency is obtained for a spatially
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flat universe with the fractional energy density in matter contributing today with
Ω

(0)
m ∼ 0.3 whereas for the cosmological constant we have Ω

(0)
Λ ∼ 0.7.

In this thesis we have assumed that dark energy is there in some form and is
driving the current accelerated expansion. Our goal was to study both the mechan-
ism behind the current acceleration and also its future evolution. In our work we
have dealt with two interesting approaches that try to explain dark energy, namely
k-essence and cosmological backreaction, and we mention the main characteristics
of these approaches below.

1.1 THE SCALAR FIELD APPROACH

There are several scalar field based models that try to explain the phenomenon
of dark energy. But in recent years an interesting branch of this line of study has
emerged that deals with non-canonical kinetic terms in the Lagrangian of the scalar
field. The first theory of this kind was introduced M. Born and L. Infeld in 1934 [26]
to avoid the infinite self-energy of the electron. The non-canonical kinetic terms
are quite common in effective field theory models arising from string theory and
in particular D-brane models. The idea of k-essence was motivated from the Born-
Infeld action of string theory [27] and in cosmology such theories were first studied
in the context of k-inflation [12]. Later, it was noted that k-essence could also yield
interesting models for dark energy [6, 7, 8, 9, 10, 11] and it was suggested that
such models could also solve the cosmic coincidence problem [7]. There have also
been attempts to try to describe dark matter through k-essence [28]. As further
developments of these ideas we also have the ghost condensation scenario [18],
ghost inflation [29] and phantom dark energy [17].

A parallel mechanism for producing the late-time acceleration of the universe
through the dynamics of scalar fields, viz. quintessence [5], has also gained a lot
of popularity in the literature. In most of the quintessence models the late-time
dynamics is dominated by the potential for the scalar field. A crucial difference
between quintessence and k-essence is that the latter class of models contain non-
canonical kinetic terms in the Lagrangian. In this sense quintessence may also be
viewed as a special case of k-essence. In fact k-essence can be called the most gen-
eral possible scalar field model since its Lagrangian encompasses both canonical kin-
etic terms, such as those present in quintessence, and also of course non-canonical
kinetic terms. But in practice only fields that contain non-canonical kinetic terms
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are called k-essence fields, and in this text whenever we refer to k-essence we
will mean exactly that. Another important subset of k-essence is purely kinetic
k-essence in which the Lagrangian contains only a kinetic factor, i.e., a function of
the derivatives of the scalar field, and does not depend explicitly on the field itself.
Such models were in fact, the first ones investigated in the context of k-inflation
[12]. In this context, they successfully yield exponential inflation, but suffer from
the “graceful exit” problem.

Much of the early interest in k-essence was due to the fact that it was said to
solve the coincidence problem. The addressing of this problem within the context
of k-essence is made possible by the existence of fixed points in the radiation and
matter era. In order to have these fixed points, it is necessary that the potential
has the form V (φ) = 1/φ2. It was shown that such models that solve the coincid-
ence problem suffer from superluminal propagation of the field perturbations [30]
(which, however, may not affect causality [31]).

Dark matter figures as the majority of matter in the Universe and is probably
non-baryonic. Although the evidence for dark matter is considered to be quite
overwhelming by many, there is no consensus as to what form it takes. It is quite
possible that it interacts with baryonic matter only through gravitational interac-
tion. Since the nature of both dark matter and dark energy are unknown, it is
plausible that these two mysterious components of the universe are the manifesta-
tions of a single entity. Several examples of attempts to unify dark matter and dark
energy can be found in the literature (for instance [32, 33, 34]). Further, it is very
strongly believed that there was an early inflationary period of the universe, and
the nearly scale independent density perturbations produced during inflation have
left a faithful imprint on features of the CMB power spectrum. Since accelerated
expansion is a common feature for both the very early and the very late Universe,
it is plausible that some common mechanism could be responsible for both. Several
models have been constructed to explain inflation and dark energy using a single
scalar field (see, for example, quintessential inflation [35]). Apart from the above
schemes there are models that try to unify inflation and dark matter (for instance
[36]) and also those that attempt to unify all three, viz. inflation, dark matter, and
dark energy (for instance [37]). An interesting attempt was made to unify dark
matter and dark energy using kinetic k-essence in [34]. Though this model had its
share of problems extensions of the formalism to extract out dark matter and dark
energy components within a unified framework have been used also in subsequent
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works [38]. In this thesis we will present two models of k-essence [10, 11] that
try to achieve a unification of inflation, dark matter and dark energy using a single
scalar field. The first model produces inflation in the early Universe using a stand-
ard quadratic potential, whereas the second model achieves this using the process
of k-inflation.

1.2 COSMOLOGICAL BACKREACTION

The standard model of cosmology does not, unlike the standard model of particle
physics, enjoy appreciable generality. It is based on the simplest conceivable class
of (homogeneous–isotropic) solutions of Einstein’s laws of gravitation. The assump-
tion of homogeneity and isotropy was largely made on grounds of simplicity and
aesthetic appeal and the standard Big Bang model of cosmology has been very suc-
cessful based on this assumption. This assumption is even justified to a large extent
by our observations of CMB radiation and the large scale structure of the Universe.
However the present Universe is certainly not homogeneous and there is a rich vari-
ety of structure present in it, from stellar systems to galaxies to clusters of galaxies
and even larger systems. Observations tell us that our Universe is inhomogeneous
up to at least the scales of super clusters of galaxies. It is clear that the inhomogen-
eous properties of the Universe cannot be described by such a strong idealization
and this calls for, in principle, a modification of the cosmological framework based
on the assumption of a globally smooth FRW metric. Taking the global average of
the Einstein tensor is unlikely to lead to the same results as taking the average over
all the different local metrics and then computing the global Einstein tensor for a
nonlinear theory such as general relativity. This realization has lead to investiga-
tion of the question of how backreaction originating from density inhomogeneities
could modify the evolution of the universe as described by the background FRW
metric at large scales.

In recent times there is an upsurge of interest on studying the effects of inhomo-
geneities on the expansion of the Universe. The main obstacle to this investigation
is the difficulty of solving the Einstein equations for an inhomogeneous matter
distribution and calculating its effect on the evolution of the Universe through
tensorial averaging techniques. Approaches have been developed to calculate the
effects of inhomogeneous matter distribution on the evolution of the Universe,
such as Zalaletdinov’s fully covariant macroscopic gravity [39]; Buchert’s approach
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of averaging the scalar parts of Einstein’s equations [40, 41] and the perturbation
techniques proposed by Kolb et. al. [42]. Based on the framework developed by
Buchert it has been argued by Räsänen [43] that backreaction from inhomogen-
eities from the era of structure formation could lead to an accelerated expansion
of the Universe. The Buchert framework from a different perspective developed by
Wiltshire [44] also leads to an apparent acceleration due to the different lapse of
time in underdense and overdense regions. Further, gauge invariant averages in
the Buchert framework have also been constructed recently [45].

In spite of numerous creative ideas proposed for the present acceleration, there
is still a lack of convincing explanation of this phenomenon. The simplest pos-
sible explanation provided by a cosmological constant is endowed with conceptual
problems [3]. Alternative mechanisms based on either modifications of the gravita-
tional theory, or invoking extra fields with tailored dynamics mostly suffer from the
coincidence problem, as to why the era of acceleration begins around the same era
when the Universe becomes structured. The ultimate fate of our Universe remains
clouded in considerable mystery. Backreaction from inhomogeneities provides an
interesting platform for investigating this issue without invoking additional physics,
since the effects of backreaction gain strength as the inhomogeneities develop into
structures around the present era.

It needs to be mentioned here that the impact of inhomogeneities on observ-
ables [46, 47] of an overall homogeneous FRW model has been debated in the
literature. Similar questions have also arisen with regard to the magnitude of
backreaction modulated by the effect of shear between overdense and underdense
regions [48]. Nevertheless arguments in favour of backreaction seem rather com-
pelling [49]. While upcoming observations may ultimately decide whether back-
reaction from density inhomogeneities drives the present acceleration, the above
studies [40, 50, 42, 43, 49, 44, 45] have highlighted that backreaction could be
a crucial ingredient of the present evolution and future fate of our Universe. In
this thesis we have not restricted ourselves to exploring the possibility of back-
reaction producing accelerated expansion, rather we have tried to find out how
backreaction can influence the evolution of the Universe once acceleration sets in.
Specifically, we have also explored the impact of the event horizon on cosmological
backreaction [51]. The presently accelerating epoch dictates the existence of an
event horizon since the transition from the previously matter dominated deceler-
ating expansion. Since backreaction is evaluated from the global distribution of
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matter inhomogeneities, the event horizon demarcates the spatial regions which
are causally connected to us and hence impact the evolution of our part of the
Universe. Any contribution from inhomogeneities of scales which cross outside the
event horizon due to accelerated expansion, needs to be excluded while computing
the overall impact of backreaction. Such an approach had remained unexplored
in previous studies of backreaction. We were able to show that backreaction with
the event horizon could lead to a surprising possibility of transition to another
decelerated future era. We further make a comprehensive analysis of our model,
that includes the event horizon, and compare our results with a standard model
of backreaction, one that does not include the event horizon. We also make an
extension of this study by considering the Universe to be divided into multiple
subdomains, and letting each subdomain evolve independently of each other, with
the aim of recreating the real Universe much better than in our previous model,
and then study the impact of backreaction in the future evolution of the Universe.

1.3 OUTLINE OF THESIS

In Chapter 2 we first briefly outline the basics of the standard Big Bang model of
cosmology based on the FRW metric and the evolution equations mentioned here
will be used in our work based on k-essence. Here we also give an introduction
on the mechanism behind scalar field driven inflationary expansion in the early
Universe along with a description of the problems present in the standard model
that inflation helps to solve. Later we describe how a traditional scalar field, like
quintessence, can give rise to the late time acceleration.

In Chapter 3 we first describe the general framework for k-essence scalar field
models and write down the equation of motion and the energy momentum tensor
for such cases. Our work on k-essence deals with the flat FRW metric but wherever
possible we present the framework equations without assuming any prior metric
of the Universe. Further in Section 3.2 we present the framework for an important
sub-class of k-essence models, namely purely kinetic k-essence models, and also
highlight a very interesting solution for this class of models, one that forms an
integral part of our work based on k-essence. In Section 3.3 we will present an
important result, that was demonstrated in [10], whereby we show that a purely
kinetic k-essence model leads to a static universe when the late-time energy density
of the universe is expressed simply as a sum of a cosmological constant and a
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dark matter term. We then develop our k-essence model in Section 3.4, that was
presented in [10], which contains both a potential and a non-canonical kinetic
term for the scalar field, but where it is possible to use a part of the formalism of
[34]. We show that our model allows for inflation in the early universe and behaves
as purely kinetic k-essence at late times and reproduces a cosmological constant
and a dark matter term in the energy density of the Universe. In order to discuss
the viability of our model, we further provide estimates of the values of the model
parameters that could be obtained from observational constraints.

In Chapter 4 we highlight our work that was presented in the paper [11]. Here
we use a form of the k-essence Lagrangian that has been the most widely used
[12, 6, 52]. Our motivation is the reproduction of the features of inflation in the
early Universe, and also generating dark matter and dark energy at late times.
We find that after the early expansion is over, our model can be approximated
as kinetic k-essence, i.e., the dynamics becomes dominated by only the kinetic
component of the scalar field. We show that the late time energy density reproduces
a cosmological constant and a matter like term which we call dark matter. We then
consider observational results from the both the early and late eras, which are used
to put constraints on the parameters of this model.

In Chapter 5 we present the Buchert framework [40, 41, 53, 50] for study-
ing cosmological backreaction. Besides showing the evolution equations in this
framework we also present an interesting aspect of it, called the “morphon” field,
which shows that the effects of inhomogeneities in the Universe can be effectively
described through a scalar field, and thus provides a realistic source for all the
numerous scalar field based models that try to explain dark energy. Further we will
show that this morphon field can also be treated as a k-essence field.

In Chapter 6 we will illustrate, using a simple two-scale model, how the Universe
evolves in the future by considering the effects of backreaction from inhomogen-
eities. We will first describe the evolution of the Universe by using the unmodified
Buchert framework equations but later on we will take into consideration the effect
of the event horizon, which inevitably forms once the Universe enters the acceler-
ated expansion phase. For the latter part we will describe two approaches that were
presented in [51] and [54]. We will then compare the evolution of the Universe
between the case where we include the event horizon in our calculations and for
the case where we don’t consider the event horizon.
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In Chapter 7 we will extend our previous model and consider the effects of
backreaction on the future evolution of the Universe by assuming the Universe to
be partitioned into multiple subdomains, each evolving differently to each other.

Finally we summarize and conclude our work in Chapter 8 with a brief descrip-
tion of possible future areas of work.



CHAPTER 2

PRIMARY FRAMEWORK

2.1 BASICS OF FRW COSMOLOGY

Here we will give a brief review of the basics of FRW cosmology that are mainly
required for the chapters on k-essence, but are also helpful when we are dealing
with the Buchert framework of backreaction.

We will work with the FRW metric with signature (+,−,−,−) which is written
as (by taking the speed of light c = 1)

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2sin2θdφ2

]
, (2.1)

where a(t) is the scale factor with cosmic time t, k is the curvature parameter
and the coordinates r, θ and φ are known as comoving coordinates. A freely moving
particle comes to rest in these coordinates. The constant k in the metric describes
the geometry of the spatial section of space-time, with closed, flat and open uni-
verses corresponding to k = +1, 0,−1, respectively.

2.1.1 EVOLUTION EQUATIONS

We will consider an ideal perfect fluid as the source of the energy-momentum tensor,
which is homogeneous and isotropic in its rest frame and which therefore coincides
with the comoving reference frame of the metric. For this the energy-momentum
tensor has the form

T µν = Diag (ρ,−p,−p,−p) , (2.2)
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where ρ is the energy density and p is the pressure of the fluid. We therefore
get from the Einstein equations two independent equations

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2
, (2.3)

ä

a
= −4πG

3
(ρ+ 3p) , (2.4)

where H is the Hubble parameter. Equation (2.3) is known as the Friedmann
equation and we call (2.4) the acceleration equation. From equation (2.4) we see
that accelerated expansion occurs for ρ+ 3p < 0. The energy-momentum tensor is
conserved by virtue of the Bianchi identities, leading to the continuity equation

ρ̇+ 3H (ρ+ p) = 0. (2.5)

We can rewrite (2.3) in the form

Ω(t)− 1 =
k

(aH)2 , (2.6)

where Ω(t) = ρ(t)/ρc(t) is the dimensionless density parameter and ρc(t) =

3H2/8πG is the critical density. The matter distribution clearly determines the
spatial geometry of our universe, i.e.,

Ω > 1 or ρ > ρc → k = +1, (2.7)

Ω = 1 or ρ = ρc → k = 0, (2.8)

Ω < 1 or ρ < ρc → k = −1. (2.9)

Observations have shown that the current universe is very close to a spatially
flat geometry (Ω ' 1).

2.1.2 EVOLUTION OF THE UNIVERSE FILLED WITH A PERFECT

FLUID

The Universe is considered to be filled by a barotropic perfect fluid with which we
can associate an equation of state parameter w that is defined as
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w =
p

ρ
. (2.10)

If we now assume w to be a constant then on solving eqns. (2.3) and (2.4) with
k = 0 we get

H =
2

3 (1 + w) (t− t0)
, (2.11)

a(t) ∝ (t− t0)
2

3(1+w) , (2.12)

ρ ∝ a−3(1+w), (2.13)

where t0 is a constant. The above solution is valid for w 6= −1. For a radiation
dominated universe we have w = 1/3 and for a dust dominated universe we have
w = 0. For these two cases we have

Radiation: a(t) ∝ (t− t0)1/2 , ρ ∝ a−4, (2.14)

Dust: a(t) ∝ (t− t0)2/3 , ρ ∝ a−3. (2.15)

Both cases correspond to a decelerated expansion of the universe. From (2.4)
we see that in order to have accelerated expansion the equation of state is given by

w < −1/3. (2.16)

So whatever acts as dark energy it must have an equation of state that satisfies
the above condition. For a cosmological constant Λ we have w = −1, which gives
rise to a constant energy density ρΛ = Λ/8πG and consequently the Hubble para-
meter also has a constant value of H =

√
Λ/3. The expression for the scale-factor

in this case comes out as

a(t) ∝ eHt. (2.17)

So far we have restricted our attention to the equation of state: w ≥ −1. Recent
observations suggest that the equation of state which is less than −1 can be also
allowed [55]. This specific equation of state corresponds to a phantom (ghost) dark
energy [17] component and requires a separate consideration. We first note that
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Eq. (2.12) describes a contracting universe for w < −1. There is another expanding
solution given by

a(t) = (ts − t)
2

3(1+w) , (2.18)

where ts is a constant. This corresponds to a super-inflationary solution where
the Hubble rate and the scalar curvature grow:

H =
n

ts − t
, n = − 2

3(1 + w)
> 0, (2.19)

R = 6
(

2H2 + Ḣ
)

=
6n(2n+ 1)

(ts − t)2 . (2.20)

The Hubble rate diverges as t → ts, which corresponds to an infinitely large
energy density at a finite time in the future. The curvature also grows to infinity as
t→ ts. Such a situation is referred to as a Big Rip singularity [56]. This cataclysmic
conclusion is not inevitable in these models, and can be avoided in specific models
of phantom fields with a top-hat potential. It should also be emphasized that we
expect quantum effects to become important in a situation when the curvature of
the universe becomes large.

2.2 INFLATION IN THE EARLY UNIVERSE

2.2.1 MOTIVATION FOR INFLATION

In the standard Big-Bang model the Universe is taken to be radiation dominated
at early times, matter dominated at late-times and as we now know there is a very
late transition to dark energy domination. This picture of the Universe has met
with a great deal of success and satisfies a variety of observational data, but we may
still ask whether the initial conditions that give rise to this Universe are natural.
Typically as physicists we look for laws of nature, and imagine that we are free to
specify initial conditions and ask how they evolve under such laws. But the Universe
seems to have only one set of initial conditions and it seems sensible to wonder if
they are relatively generic or finely tuned. At least two features of the Universe seem
highly non-generic: its spatial flatness, and its high degree of homogeneity and
isotropy. It might be that these conditions are more likely than they appear at first
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and there is some dynamical mechanism that can take a wide spectrum of initial
conditions and evolve them towards spatial flatness and homogeneity/isotropy.
The inflationary universe scenario provides such a mechanism and has become a
central organizing principle of modern cosmology, even if we still have not found
concrete proof of its existence (See [57] for details on inflation).

Before describing the basics of the inflationary mechanism we will highlight
some of the problems that inflation claims to solve.

2.2.1.1 FLATNESS PROBLEM

As we saw in (2.6), we can rewrite the Friedmann equation (2.3) using the density
parameter Ω in the following way,

Ω− 1 =
k

a2H2
. (2.21)

For a flat Universe (k = 0), we have Ω = 1. If the Universe is flat then it
will remain so for all time, otherwise the density parameter simply evolves. The
flatness problem is simply that the combination aH is a decreasing function of
time for a matter or radiation dominated Universe. For example, for a nearly flat
matter dominated Universe we have |1− Ω| ∝ t2/3 and for a nearly flat radiation
dominated Universe we have |1− Ω| ∝ t. From observations we know that at
present Ω0 is not very different from unity, at least not more than an order of
magnitude. This implies that at earlier times Ω must have been extremely close
to unity. To obtain our present Universe, for example at nucleosynthesis which
occurred when the Universe was around 1s old, we would need to have

|Ω(tnuc)− 1| . 10−16. (2.22)

At earlier times Ω must have been still more closer to 1. The flatness problem
states that such finely tuned initial conditions are extremely unlikely. Almost all
initial conditions lead either to a closed Universe that recollapses almost immedi-
ately, or to an open Universe that quickly enters the curvature dominated regime
and cools below 3K within one second of its existence. For this reason the flatness
problem is also sometimes called the age problem – how did our universe get to be
so old?
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2.2.1.2 HORIZON PROBLEM

In FRW cosmology we have particle horizons, because there is a finite amount of
time since the Big Bang singularity and therefore a photon (or a particle traveling
at the speed of light) can only travel a finite distance. The horizon problem is
simply the fact that the CMB is homogeneous and isotropic to a high degree of
precision even though widely separated points on the last scattering surface are
completely outside each other’s horizons, which imply that there could have been
no causal contact between the various regions and thus how homogeneity arose is
a mystery.

2.2.1.3 RELIC PARTICLE ABUNDANCES

We know that radiation density reduces with expansion of the Universe as 1/a4,
therefore if the Universe starts with a very small amount of non-relativistic matter
then its slower reduction in density will rapidly bring it to prominence. Particles
in the Standard Model of particle interactions don’t lead to any problems, because
they interact strongly with radiation and thermalization stops them from becom-
ing too prominent. But modern particle physics predicts other particles. The most
crucial in originally motivating inflation was a type of particle called magnetic
monopole. It is predicted that they were produced in abundance at a very early
stage in the Universe, and are also expected to be extraordinarily massive. Such
particles would be non-relativistic for almost all the Universe’s history, giving them
plenty of time to come to dominate over radiation. Since we know the Universe
is not dominated by magnetic monopoles now, theories predicting them are in-
compatible with the standard Big Bang model. While magnetic monopoles were
relic particles thought most important at the time inflation was conceived, there
are now several other kinds of relic particles also speculated to exist which would
cause similar problems.

2.2.2 HOW INFLATION HELPS

Inflationary cosmology is not a modification of the Hot Big Bang model but rather
it is an add-on that tries to solve some of the problems associated with this model
at early times without disturbing any of its successes. The idea of inflation was
first proposed by Alan Guth in 1981 [59] (See also Ref. [60]). The precise defin-
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ition of inflation is simply any epoch in which the scale-factor of the Universe is
accelerating, i.e.

ä > 0.

There is an equivalent alternative expression of the condition of inflation that
gives it a more physical meaning

d

dt

1

aH
< 0. (2.23)

Since 1/aH is the comoving Hubble length the condition for inflation is that
this length decreases with time.Viewed in coordinates fixed with the expansion,
the observable Universe actually becomes smaller during inflation because the
characteristic scale occupies a smaller and smaller size as inflation proceeds.

If inflation occurs then all the aforementioned problems of the Big Bang model
can be solved. The flatness problem is solved because the condition for inflation
(2.23) is precisely the condition that drives Ω to 1. The horizon problem can be
solved because of the dramatic reduction of the comoving Hubble length during
inflation which allows our present observable Universe to originate from a tiny
region that was well inside the Hubble radius early on during inflation. The dra-
matic expansion of the inflationary era dilutes away any unfortunate relic particles
because their density is reduced by the expansion more quickly than the other
components. Provided enough expansion occurs this dilution can make sure that
these particles are not observed today.

2.2.3 BASICS OF INFLATION MECHANISM

The most straightforward way to obtain inflation in the early universe is to use
the vacuum energy provided by the potential of a scalar field, the “inflaton”. The
energy density and pressure of this homogeneous scalar field φ ≡ φ(t) is

ρ =
1

2
φ̇2 + V (φ), (2.24)

p =
1

2
φ̇2 − V (φ). (2.25)

The term V (φ) is the potential of the scalar field, which may be derived from
some particle physics motivation. Different inflationary models correspond to dif-
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ferent choices of the potential. The equations of motion can be obtained by directly
substituting these relations into the Friedmann and continuity equations. Assuming
a spatially flat Universe we obtain

H2 =
8πG

3

[
1

2
φ̇2 + V (φ)

]
, (2.26)

φ̈+ 3Hφ̇+
dV

dφ
= 0. (2.27)

Inflation can occur if the evolution of the field is sufficiently gradual that the
potential energy dominates the kinetic energy and the second derivative of φ is
small enough for this state of affairs to be maintained for a sufficient period. Thus
we want

φ̇2 � V (φ),

∣∣∣φ̈∣∣∣� ∣∣∣3Hφ̇∣∣∣ , |V ′| .
This assumption is called the “slow-roll” approximation and under this the

equations of motion can now be written as

H2 ' 8πG

3
V (φ), (2.28)

3Hφ̇ ' −V ′(φ), (2.29)

where V ′ = dV/dφ. For this approximation to be valid it is necessary for two
conditions to hold. These are

ε(φ)� 1, |η(φ)| � 1, (2.30)

where the “slow-roll parameters” ε and η are defined by

ε =
1

16πG

(
V ′

V

)2

, (2.31)

η =
1

8πG

(
V ′′

V

)
. (2.32)
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Note that ε ≥ 0 while η can have either sign. Also note that these definitions
are not universal as some people like to define them in terms of Hubble parameter
rather than the potential. The slow-roll parameters make it easy to see where
inflation might occur on a given potential. For example for V (φ) = m2φ2/2, they are
satisfied when provided that φ2 > 1/4πG. For such a potential inflation proceeds
until the scalar fields gets too close to the minimum for the slow-roll conditions to
be maintained, and inflation comes to an end.

The amount of inflation that occurs is quantified by the ratio of the scale-factor
at the final time to its value at some initial time. Since this is typically a large
quantity a logarithm is taken to give the number of e-foldings N :

N(t) ≡ ln
a(tend)

a(t)
, (2.33)

where tend is the time at the end of inflation. This measures the amount of
inflation that still has to occur after time t, with N decreasing to zero at the end
of inflation. To solve the horizon and flatness problem around 60 - 70 e-foldings
of inflation are required. For most purposes, the only knowledge we need is how
much more inflation will occur from a given scalar field value φ, rather than from
a given time. This can be calculated immediately via the slow-roll approximation
without any need to solve the equations of motion for the expansion:

N ≡ ln
a(tend)

a(t)
=

� tend

t

Hdt ' 8πG

� φend

φ

V

V ′
dφ, (2.34)

where φend is defined by ε(φend) = 1, if inflation ends through the violation of
the slow-roll conditions.

2.3 LATE-TIME ACCELERATION USING SCALAR FIELDS

The cosmological constant corresponds to a fluid with a constant equation of state
w = −1. The current observed energy density attributed to the cosmological con-
stant is not only much smaller than what is expected from order-of-magnitude
estimates based on the quantum theory of fields, but is only a few times greater
than the present matter density. If we explain dark energy with the help of the
cosmological constant then it means that it will behave as a fluid with a constant
equation of state and energy density. But observations say little about the time evol-
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ution of the equation of state of dark energy, therefore we can consider the scenario
where the equation of state of dark energy changes with time, such as in inflationary
cosmology. Scalar fields naturally arise in particle physics including string theory
and these can act as candidates for dark energy. So far a wide variety of scalar field
dark energy models have been proposed. These include quintessence, phantoms,
k-essence, tachyon, ghost condensates and dilatonic dark energy amongst many.
Below we will describe with the help of a simple quintessence model how late-time
acceleration can be achieved.

We will consider an ordinary scalar field φ that is minimally coupled to gravity
and an unspecified potential V (φ) (See [58, 4] for details). The action for this
quintessence field is given by

S =

�
d4x
√
−g
[

1

2
∂µφ∂

µφ− V (φ)

]
. (2.35)

For a flat FRW metric the equation of motion of this field comes out as

φ̈+ 3Hφ̇+
dV

dφ
= 0. (2.36)

and the energy density and pressure of the field are obtained to be

ρ =
1

2
φ̇2 + V (φ), p =

1

2
φ̇2 − V (φ). (2.37)

Using these values in (2.3) and (2.4) we get

H2 =
8πG

3

[
1

2
φ̇2 + V (φ)

]
, (2.38)

ä

a
= −8πG

3

[
φ̇2 − V (φ)

]
. (2.39)

From the above equation it is clear that the Universe accelerates for φ̇2 < V (φ).
This means that one requires a flat potential to give rise to an accelerated expansion.
The original and simplest example of a quintessence potential is of the type

V (φ) =
M4+α

φα
, (2.40)



CHAPTER 2. PRIMARY FRAMEWORK 22

where α is a positive number and M is a constant with the unit of mass (taking
} = c = 1), which gives V (φ) the dimensions of an energy density. We need to
match the energy density of the field to the current critical energy density, that is

ρ0 ≈ m2
PlH

2
0 ≈ 10−48(GeV)4. (2.41)

The mass squared of the field φ is given by m2
φ = d2V

dφ2
≈ ρ/φ2, whereas the

Hubble expansion rate is given by H2 ≈ ρ/m2
Pl. The universe enters a tracking

regime in which the energy density of the field catches up that of the background
fluid when m2

φ decreases to of order H2. This shows that the field value at present
is of order the Planck mass (φ0 ∼ mPl), which is typical of most of the quintessence
models. Since ρ0 ≈ V (φ0), we obtain the mass scale

M = (ρ0m
α
Pl)

1
4+α . (2.42)

This then constrains the allowed combination of α and M . For example the
constraint implies M = 1 GeV for α = 2. This energy scale can be compatible with
the one in particle physics, which means that the severe fine-tuning problem of
the cosmological constant is alleviated. Nevertheless a general problem we always
have to tackle is finding such quintessence potentials in particle physics.
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CHAPTER 3

UNIFYING INFLATION, DARK

ENERGY AND DARK MATTER USING

k-ESSENCE

3.1 EQUATION OF MOTION OF k-ESSENCE

For our work in k-essence we will work with a flat FRW metric so that k = 0. For
such a metric the corresponding Einstein field equations (2.3) and (2.4) are

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ, (3.1)

ä

a
= −4πG

3
(ρ+ 3p) , (3.2)

where ρ is the energy density of the perfect fluid that is considered to fill up
the Universe, and p is its pressure. We consider the k-essence field to be minimally
coupled to the gravitational field and the k-essence action looks like

Sk =

�
d4x
√
−gL (φ,X) , (3.3)

where φ is the k-essence scalar field and X is the kinetic term that is defined as

X =
1

2
∂µφ∂

µφ. (3.4)

To preserve the condition of homogeneity and isotropy of the scalar field we
must have φ = φ(t). So we get the value of X as
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X =
1

2
g00∂0φ∂0φ =

1

2
φ̇2. (3.5)

The k-essence Lagrangian L can be any function of the scalar field and X.
Traditional scalar field theories, such as quintessence [5], always contained terms
that were linear in X, so in a way X can be called the canonical kinetic term. What
makes k-essence special is that here the Lagrangian can contain terms that are
non-linear in X. The total action describing the dynamics of k-essence and General
Relativity is the sum of Sk and the Einstein-Hilbert action:

S =

�
d4x
√
−g
[
− 1

16πG
R + L (φ,X)

]
, (3.6)

where R is the Ricci scalar. If we now vary the action (3.3) with respect to the
metric gµν , then we get the energy-momentum tensor of the k-essence field as

Tµν =
2√
−g

δSk
δgµν

=
∂L
∂X
∇µφ∇νφ− gµνL, (3.7)

where ∇µ denotes the covariant derivative associated with the metric gµν . Now
the k-essence scalar field can be treated as a perfect fluid and for such a case Tµν is
of the form

T µν = Diag (ρ,−p,−p,−p) , (3.8)

where p = −1
3
T ii is the pressure and is given by the Lagrangian density, p =

L (φ,X), and the energy density ρ = T 0
0 is

ρ = 2X
∂L
∂X
− L. (3.9)

For such a perfect fluid it is conventional to introduce the equation of state
parameter w, that is defined as

w ≡ p

ρ
. (3.10)

This definition of w characterises intrinsic properties of k-essence in a coordin-
ate independent way. We can also define an adiabatic sound speed associated with
the k-essence fluid, which gives us the speed at which perturbations travel. It is
defined as [61]
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c2
s ≡

∂p/∂X

∂ρ/∂X
. (3.11)

Note that this definition is different from the usual definition of the adiabatic
sound speed (namely, c2

s =
dp

dρ
). However, it has been shown recently [62] that

perturbations in such models travel with a speed defined as above, where the
authors also define this to be the “phase speed.”

The equation of motion of the k-essence scalar field is given by either varying
the Lagrangian with respect to φ or inserting the values of ρ and p in the continuity
equation (2.5). Doing so we get

φ̈
∂ρ

∂X
+ 3φ̇H

∂p

∂X
+
∂ρ

∂φ
= 0. (3.12)

Usually k-essence models are restricted to the Lagrangian density of the form

L = F (X)V (φ), (3.13)

which is the most widely studied form and was in fact first proposed in the paper
on k-inflation [12]. Another well known variation is of the type L = F (X) + V (φ)

which has previously been studied in the context of k-essence models in [63] and
its properties have been discussed in some detail in [64]. But the important point
to note is that the k-essence Lagrangian can in fact be any function of φ and X.

3.2 PURELY KINETIC k-ESSENCE

For purely kinetic k-essence the Lagrangian, as the name suggests, will only be a
function of the kinetic term X and does not explicitly depend on the field φ. We
can therefore write the Lagrangian as

L = F (X) . (3.14)

The energy density ρ (3.9) will therefore be

ρ = 2XFX − F, (3.15)

where FX = dF/dX. Now the equation of motion (3.12) of kinetic k-essence
field is
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(FX + 2XFXX) φ̈+ 3HFX φ̇ = 0, (3.16)

where FXX = d2F/dX2. If this equation is rewritten in terms of X then it turns
out to be

(FX + 2XFXX) Ẋ + 6HFXX = 0. (3.17)

This can be integrated exactly [34] to give the solution

√
XFX = ka−3, (3.18)

where k is a constant of integration. This solution was previously derived in
a slightly different form in [52]. Given any form of F (X) Eq. (3.18) gives the
evolution of X as a function of the scale factor a. This result holds irrespective of
the spatial curvature of the universe.

3.3 SIMPLE UNIFICATION USING PURELY KINETIC k-
ESSENCE

In this section we will demonstrate that a simple unification of dark energy and dark
matter is not possible using purely kinetic k-essence, a result that was presented in
our paper [10]. As we saw earlier in Section 3.2, for purely kinetic k-essence the
Lagrangian can be written as

L = F (X), (3.19)

and for this we have a relation between X and the scale factor a

√
XFX = ka−3, (3.20)

and the energy density is

ρ = 2XFX − F. (3.21)

As the most simple choice for the configuration of the late-time energy density,
we express the k-essence energy density as
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ρ = λ+
C1

a3
, (3.22)

where the energy density is the sum of a cosmological constant and a matter-
like term which we call dark matter. Needless to say, such an expression will hold
as the true energy density of the universe after matter domination has begun, i.e.,
when radiation is a negligible fraction of the total energy density of the universe.
Now using (3.20) we can rewrite the energy density in (3.22) in terms of X as

ρ = λ+
C1

k

√
XFX . (3.23)

By equating (3.21), that is the standard form of the energy density for a purely
kinetic k-essence model, with (3.23) we get a differential equation for F given by

FX
λ+ F

=
1

2X − C1

k

√
X
. (3.24)

On integrating this equation we get

F = −λ− C2

(
C1 − 2k

√
X
)
, (3.25)

with C2 being an integration constant. Note here that since X and a are related
by Eq. (3.20), the constancy of C2 with respect to X implies constancy of C2 with
respect to a as well. Now, using the relation (3.20) once again to switch back to
the variable a in the expression for F in Eq. (3.25), we obtain

C2 =
1

a3
. (3.26)

Thus, the only solution compatible with the ansatz [Eq. (3.22)] for the energy
density is of a constant scale factor a. Such a solution is indeed consistent with the
specific form for F (X) in Eq. (3.25) (actually follows from it). However, since this
solution is not compatible with an observationally expanding universe, it rules out
our assumption of the energy density to be of the form expressed in Eq. (3.22). We
must clarify here that we have assumed that the kinetic k-essence energy density to
be exactly of the form of (3.22), whereas in [34, 38] the resultant energy density
came out to be approximately of the form of (3.22) under certain assumptions.
Therefore, using purely kinetic k-essence we cannot hope to unify dark matter
& dark energy, at least exactly in the form of (3.22). Nonetheless, our analysis
does not rule out other possible functional categorisations of the late-time energy
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density through which dark matter and dark energy could possibly emerge. One
could also look into other avenues to achieve the unification, and we try to provide
such a way with our model that we will present in the next section.

3.4 k-ESSENCE MODEL FOR UNIFICATION

Here we will describe the model for unification that was proposed in our paper
[10]. We choose our model to have a Lagrangian density of the form

L = F (X)− V (φ). (3.27)

Although not very common but as stated earlier such forms have been discussed
previously in [63]. We choose the functional form of F to be

F (X) = KX −m2
PlL
√
X +m4

PlM, (3.28)

where K, L, and M are dimensionless positive constants, mPl the Planck mass,
and keeping with the spirit of k-essence, the second term represents the non-
canonical correction (L2 > 4KM) to the kinetic energy. Our choice of the form
of F (X) is similar to the type considered in Ref. [52]. Additionally, we include a
non-vanishing potential V (φ) given by

V (φ) =
1

2
m2φ2. (3.29)

In order to make the subsequent analysis more transparent, especially while
applying observational constraints on the parameters, we rewrite the kinetic part
of our Lagrangian in the form

F (X) = B
(

1− 2A
√
X
)2

− C, (3.30)

where A, B and C can be expressed in terms of our original model parameters
as

A = m−2
Pl

K

L
; B = m4

Pl

L2

4K
; C = m4

Pl(
L2

4K
−M). (3.31)

The energy density corresponding to our model turns out to be
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ρ = 2XFX − F + V = B
(
4A2X − 1

)
+ C +

1

2
m2φ2, (3.32)

and the pressure is given by

p = B
(

1− 2A
√
X
)2

− C − 1

2
m2φ2. (3.33)

The Friedmann equation (3.1) in this case can be written as

H2 =
8πG

3

(
4A2BX −B + C +

1

2
m2φ2

)
. (3.34)

The equation of motion (3.12) for the scalar field is obtained to be

[FX + 2XFXX ] φ̈+ 3HFX φ̇+
dV

dφ
= 0, (3.35)

which in terms of the parameters can be written as

4A2Bφ̈+ 12HA2Bφ− 6
√

2HAB +m2φ = 0. (3.36)

Considering the standard slow-roll approximation for inflation (see Section 2.2
for details on inflation) we initially take the potential to be much larger than the
kinetic part, i.e. we have V (φ) >> 2XFX − F . Correspondingly the field equation
(3.35) approximates to

3HFX φ̇+
dV

dφ
' 0, (3.37)

and we can write Eq. (3.34) as

H2 ' 8πG

3

(
1

2
m2φ2

)
. (3.38)

The slow-roll parameters for this model are given by (V ′ = dV/dφ & V ′′ =

d2V/dφ2)

ε =
1

16πG

(
V ′

V

)2
1

FX
, (3.39)

η =
1

8πG

V ′′

V

1

F 2
X

. (3.40)
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It can be seen that the slow-roll parameters for this model are similar to the
standard inflationary scenario (see Eqns. (2.31) and (2.32)), the only difference
being the extra factors of FX . To completely identify with the standard case we
demand that FX ∼ O (1). Now equating Eqns. (3.37) and (3.38) we obtain

√
X ' 1

4
√

2A2B

(
− m√

12πG
+ 2
√

2AB

)
, (3.41)

showing that for the duration of inflation X and hence F are practically con-
stant. The number of e-folds of expansion is given by

N =

� te

ti

Hdt = 8πG

� φi

φe

V

V ′
FXdφ ' 4πGFX

φ2
i − φ2

e

2

=
4πGFX
m2

(Vi − Ve) , (3.42)

where the subscript ‘i’ refers to the beginning of inflation and ‘e’ refers to the
end. Inflation ends with ε ∼ 1, leading to

φ2
e '

1

4πGFX
. (3.43)

Using this Eq. (3.42) we get

Vi '
m2

4πGFX

(
N +

1

2

)
. (3.44)

So far the inflationary scenario in our model is almost indistinguishable from a
standard scalar field inflation involving a chaotic quadratic potential. As inflation
ends there will be kinetic domination since now the potential decays and becomes
gradually negligible. So for the period of kinetic domination, Eq. (3.35) can be
approximated as

[FX + 2XFXX ] φ̈+ 3HFX φ̇ ' 0, (3.45)

i.e., we effectively recover Eq. (3.16) for kinetic k-essence. So the formalism
described in Section 3.2 carries over. Hence, using Eq. (3.20) we get

X =
1

16A4B2

(
2AB +

k

a3

)2

. (3.46)
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Then using Eq. (3.32), and keeping in mind that V was now negligible, the
energy density at this stage is given by

ρ = C +
k

Aa3
+

k2

4A2Ba6
. (3.47)

The subsequent evolution of the universe may be described as follows. During
the initial period of kinetic domination the third term in Eq. (3.47) dominates. But
that term becomes small quickly (compared to the radiation term ∼ a−4 that we
have not written down explicitly here) and a period of radiation domination in
the universe ensues. The second term in Eq. (3.47) gains prominence in the epoch
of matter domination, and we identify it with dark matter. But as the universe
evolves toward the present era the first term begins to dominate and behaves as
a cosmological constant giving rise to the observed accelerated expansion of the
universe. The equation of state parameter after the end of inflation is found to be

w =

k2

4A2Ba6
− C

C +
k

Aa3
+

k2

4A2Ba6

. (3.48)

We outline the values of w over the various epochs, which further supports the
above statements:

w ≈ 1 after the end of inflation and before radiation domination

w ≈ 0 during matter domination

w → −1 as a→∞

Using Eq. (7) the adiabatic sound speed turns out to be

c2
s =

1

2ABa3

k
+ 1

. (3.49)

From this equation we see that the sound speed gradually becomes zero as the
universe expands. In the next section we will show that it is negligible during the
era of matter domination and beyond.
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3.5 OBSERVATIONAL CONSTRAINTS ON THE MODEL

We have so far seen that the model considered by us reproduces the primary fea-
tures of early inflation and gives rise to a matter as well as a dark energy component
in the later evolution of the universe. The viability of this model depends of course
on the possible values of the parameters. We used various observational features
of the universe to constrain the parameters of our model. We first discuss the in-
flationary dynamics of the early universe. The amplitude of density perturbations
produced by inflation is given by

δH '
H2

4π3/2φ̇
, (3.50)

which in our model turns out to be

δH = 4

√
2

3
G3/2V

3/2

V ′
FX =

4√
3
G3/2mFXφ

2. (3.51)

According to the COBE normalization δH ∼ 2×10−5. We assume that 60 e-folds
of inflationary expansion takes place. From Eq. (3.44) this then gives

φ2
iFX '

60.5

2πG
. (3.52)

Hence using this value in Eq. (3.51) we get m ∼ 1013GeV = 10−6mPl. Using
the last equation we find the slow-roll parameters from Eqns. (3.39) and (3.40) to
be

ε (φi) =
1

16πG

4

φ2
iFX

=
1

2 (N + 1/2)
= 7.63× 10−3, (3.53)

η (φi) =
1

8πG

2

φ2
iF

2
X

=
1

2 (N + 1/2)FX
∼ O

(
10−3

)
. (3.54)

The tensor-to-scalar ratio turns out to be

r = 16 ε (φi) = 0.12. (3.55)

Similarly, the spectral index is obtained as

ns = 1− 6ε (φi) + 2η (φi) ≈ 0.95. (3.56)
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Furthermore from Eq. (3.44) we see that the initial value of the potential is

Vi ≈ 1065(GeV )4 � m4
Pl = 1076(GeV)4, (3.57)

showing that classical physics remains valid at the beginning of inflation. All
the above calculated parameters are of the same magnitude as one would get in a
standard model of inflation based on a quadratic chaotic potential. Knowing the
value of m we can also estimate the magnitude of the kinetic component during
inflation, from Eq. (3.41) to be

X =
1

2
φ̇2 ≈ 1062(GeV)4. (3.58)

We could estimate the above value because we had assumed that FX ∼ O (1).

In view of Eq. (46) and also since FX = 4A2B − 2AB√
X

, this assumption leads to

K = 4A2B ∼ O (1) , (3.59)

where we have used Eq. (3.31) in the first equality. When inflation ends then
using Eq. (3.43) and the value of m we see that

Ve =
m2

8πGFX
≈ 1062(GeV)4 ≈ X. (3.60)

Thereafter, the magnitude of the potential decreases and the kinetic component
begins to dominate, and as we saw from Eq. (3.47) when there is full kinetic
domination it will fall of as a−6, quickly paving the way for a radiation dominated
universe. After the end of inflation the field φ continues to roll down in the absence
of any minimum in the potential. Thus reheating could take place only through
gravitational particle production. Standard calculations [65, 66] gives the density
of particles produced at the end of inflation as

ρR ∼ 0.01gH4
e = 0.01g

(
8πG

3
Ve

)2

= 0.01g

(
m2

3FX

)2

, (3.61)

where g is the number of fields which produce particles at this stage, likely to
be between 10 and 100. The relative densities turns out to be

ρR
ρφ

= 0.01g

(
m2

3FX

)2
8πGFX
m2

= 7.71× 10−14 g

FX
. (3.62)
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The numerical value of the radiation density is

ρR ' 8.46× 1049 g

F 2
X

(GeV)4, (3.63)

which if immediately thermalized will give rise to temperature

Te '
3.03× 1012

F
1/2
X

(
g

g∗

)1/4

GeV, (3.64)

where g∗ is the total number of species in the thermal bath and maybe somewhat
higher than g. We assume that immediately after the end of inflation there is
complete kinetic domination so that ρφ ∝ 1/a6. Then we get

ρR
ρφ
∝ a2. (3.65)

Hence from Eq. (3.62) we see that the universe has to expand by a factor of
about 106 to 107 after the end of inflation to become radiation dominated and at
which stage the temperature which goes as T ∝ 1/a is given by

T ' 3.03× 105

F
1/2
X

GeV. (3.66)

So we see that radiation domination sets in comfortably before nucleosynthesis.
But the above expression needs some correction to allow for the period between
the end of inflation, when ρφ ∝ 1/a2, and complete kinetic domination, i.e., when
ρφ ∝ 1/a6. Although this will reduce the temperature at the onset of radiation
domination it will still be high enough for a successful nucleosynthesis, during
which a temperature of around 1 MeV is sufficient.

So far we have examined the dynamics of the inflationary era. We now try to
impose constraints on the model from the matter dominated era and the present
epoch. We have already shown in Eq. (3.47) what the late-time energy density of
the universe will be. Observations require that the current magnitude of a cosmo-
logical constant be about 10−12(eV)4. So we must have

C ' 10−48(GeV)4. (3.67)

Further, since the current dark matter density is about one-third that of dark
energy, one has
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C

3
' k

Aa3
0

, (3.68)

the subscript “0” signifying the present epoch. Observations tell us that the
fraction of the present total energy density of the universe contained in radiation is
(ΩR)0 ' 5× 10−5 and that contained in dark energy is (ΩDE)0 ' 0.73. The present
radiation density of the universe is thus (ρR)0 =

(ΩR)0
(ΩDE)0

C ' 6.94× 10−53(GeV)4. We
denote the third term in (3.47) as ρk. It is known that nucleosynthesis occurs at
a redshift of z ∼ 1010. We assume that ρR crosses over ρk at a redshift of z ∼ 1012.
We then get

z2 ' 4A2Ba6
0

k2
(ρR)0 = 4

9

C2
B (ρR)0 . (3.69)

Thus one obtains a lower bound on the parameter B given by

B ≥ 4× 10−22(GeV)4. (3.70)

Now using Eq. (3.59) we obtain an upper bound on parameter A given by

A ≤ 1010(GeV)−2. (3.71)

Using the limiting values for the parameters it is found that the crossover
between the dark matter density and ρk occurred at a redshift of z ∼ 109 , and that
between dark matter and radiation occurs at a redshift of z ∼ 104, i.e., at the epoch
of matter-radiation equality. We also find that the present value of ρk is

(ρk)0 =
k2

4A2Ba6
0

' 6.94× 10−77(GeV)4, (3.72)

and the adiabatic sound speed at the epoch of matter-radiation equality (at a
redshift of about 104) is

(
c2
s

)
eq

=
1

2ABa3
eq

k
+ 1

' 1
6B

Cz3
eq

+ 1
' 4.1× 10−16. (3.73)

We can re-express w from Eq. (3.48) in terms of the redshift z. Since ρk is
negligible compared to the other components, we have
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w ≈ −C

C +
k

Aa3

=
−C

C +
k

Aa3
0

(z + 1)3
. (3.74)

Thereafter it is possible to find dw/dz. Its value at the current epoch, i.e., at
redshift z = 0 using the above limiting values of A and B from Eqns. (3.70), (3.71)
turned out to be (

dw

dz

)
z=0

≈ 2.733× 10−28. (3.75)

On the other hand, observations suggest that inflation ends at a redshift of
about z ∼ 1028. As we saw in the analysis on inflationary dynamics, radiation
comes to dominate the kinetic energy density of the scalar field after the universe
has expanded by about 106 to 107 after the end of inflation. Assuming that ρR
crosses over ρk at a redshift of 1020, and proceeding as before for obtaining Eq.
(3.70), in this case we obtain an upper bound on the parameter B,

B ≤ 4× 10−6 (GeV)4 , (3.76)

and then a corresponding lower bound on the parameterA [using (3.59)] given
by

A ≥ 250 (GeV)−2 . (3.77)

Using these set of limiting values we find that the crossover between dark matter
and ρk occurred at a redshift of about 1014, whereas that between dark matter and
radiation remained the same as in the earlier case. In this case (ρk)0 and (c2

s)eq are
given by

(ρk)0 ' 6.94× 10−93(GeV)4, (3.78)

(
c2
s

)
eq
' 4.1× 10−32. (3.79)

If we use the limiting values of A and B from Eqns. (3.76) and (3.77) in the
dw/dz relation obtained from Eq. (3.74), we get(

dw

dz

)
z=0

≈ 1.281× 10−45. (3.80)
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One can also estimate the current value of the equation of state parameter in
our model, which using (3.48) turns out to be

w0 '
−C

C +
k

Aa3
0

' −C
C + C/3

' −0.75. (3.81)

It should be noted here that the need to determine the value of k explicitly did
not arise in our calculations. Its value can be determined from (3.68), provided we
know the values of A and C, i.e., k is not an independent parameter in our model.
We can further find out at what redshift the universe starts to accelerate due to
the presence of dark energy. Knowing that for acceleration to begin we must have
w = −1/3, from (3.74) we find

zacc ≈ 0.817. (3.82)

Such a value for the redshift is in fact quite compatible with present observations
[67]. Finally, using Eqns. (3.70), (3.71), (3.76), and (3.77), in Eq. (3.31), one finds
that the parameter L of our model (3.28) is constrained to lie in the range

10−49 ≤ L ≤ 10−41. (3.83)

and M has to be tuned to satisfy the last relation in Eq. (3.31). We thus see that
for a choice of the parameters K ∼ O(1) and L in the range given above it is pos-
sible to have a k-essence model that not only unifies dark matter and dark energy
but also produces inflation in the early universe as well. Note that the requirement
of tuning of one of the parameters, viz., M is to be expected, since this is merely a
restatement of the fine-tuning problem associated with the cosmological constant.
Further, it may be noted that the coincidence problem of the standard ΛCDM cos-
mology is retained at a similar level within the present framework. In addition
to the tuning of the parameter M , as in the ΛCDM model we have used observa-
tions to fix the ratio of Ωm and ΩΛ effectively through our Eq. (3.68). Though dark
matter and dark energy are generated within a unified framework in this model,
the late-time behaviour is quite akin to that of the standard ΛCDM model with its
coincidence problem.
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3.6 SUMMARY AND DISCUSSION

To summarize, we considered a model of k-essence to study the possibility of produ-
cing inflation in the early universe, and subsequently generating both dark matter
and dark energy during later evolution in appropriate order. We first showed that
it was difficult to unify dark matter and dark energy using purely kinetic k-essence,
since the ansatz of a late-time energy density expressed simply as a sum of a cos-
mological constant and a matter term lead to a static universe. We presented an
alternative model including a potential for the scalar field that achieved this uni-
fication and also behaved effectively as purely kinetic k-essence at late times. We
showed that our model generated inflation in the early universe that reproduced
the basic features of the standard chaotic inflation model involving a quadratic
potential. At the end of inflation when the potential in our model became negli-
gible in comparison to the kinetic component we were able to approximate the
model as purely kinetic k-essence. The expression for the energy density in terms
of the scale factor a and also for that of adiabatic sound speed were obtained. We
found that the resultant energy density contained terms that achieved the unifica-
tion of dark matter and dark energy. Current observations quite strongly favour a
cosmological constant as the source of dark energy. Our model reproduced a cos-
mological constant at late times. We then used observational constraints ranging
from the inflationary era to the subsequent matter and radiation dominated eras
and the present accelerated phase as well, to impose a set of bounds on the model
parameters. In this way we could provide an estimate of the relative strengths of
the various terms of our model Lagrangian. The value of the current equation of
state parameter, and the redshift at which the transition to the accelerated phase
occurs, that we estimated, lie within observational bounds. The adiabatic sound
speed came out to be close to zero when calculated at the epoch of matter-radiation
equality, thus posing no problems for structure formation, since the sound speed
decreased further as the scale factor increased.

It should be pointed out that the form of the potential chosen for the model,
though widely used for its simplicity, is not very realistic and only serves to highlight
the features of the model during the inflationary era. Recent Wilkinson Microwave
Anisotropy Probe (WMAP) data analysis [68] suggest that the best fit potential for
inflation is a trinomial potential and further study of our model could be made by
using such a potential. Moreover, it would be interesting to investigate the relation
of our model to the dynamics of another widely used class of k-essence models
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where the Lagrangian is taken to be of the type L = F (X)V (φ). Finally, since
the consideration of non-canonical scalar field kinetics in cosmology was originally
motivated by the Born-Infeld [27] action of string theory, and there have been many
more recent string theoretic inputs in cosmology such as the idea of the landscape
[69], it should be worthwhile to explore the possible origin of generalized non-
canonical actions such as ours in the low energy limit of specific string theoretic
models.



CHAPTER 4

ANOTHER k-ESSENCE MODEL OF

UNIFICATION

In the last chapter we described a k-essence model [10] that reproduced the essen-
tial features of inflation, dark matter, and dark energy within a unified framework.
The Lagrangian chosen in that model was of the form where the kinetic and poten-
tial terms were decoupled in the standard way. However, it may be recalled that in
most k-essence models [6, 7, 9, 52] including the original k-inflation idea [12], the
distinguishing feature was the use of non-canonical kinetic terms in the Lagrangian
of the form F (X)V (φ). In the work that we present below, based on our paper [11],
we return to such a Lagrangian with the motivation of reproducing the features of
inflation in the early Universe, and also generating dark matter and dark energy
at late times. We find that after the early expansion is over, our present model can
be approximated as kinetic k-essence, i.e., the dynamics becomes dominated by
only the kinetic component of the scalar field. We show that the late time energy
density reproduces a cosmological constant and a matter like term which we call
dark matter. We then consider observational results from the both the early and
late eras, which are used to put constraints on the parameters of this model.

4.1 THE MODEL

As mentioned earlier, unlike the previous model, here we begin with a more tradi-
tional form for the k-essence Lagrangian for a scalar field φ, which is

L = F (X)V (φ). (4.1)
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The functional forms of F and V are taken to be

F (X) = KX −m2
PlL
√
X +m4

PlM, (4.2)

V (φ) = 1 + e−φ/φc , (4.3)

where mPl denotes the Plank mass, and where the parameters K, L, and M are
dimensionless, and were taken to be positive. The parameter φc is also taken to be
positive and clearly has the dimension of φ. We work in natural units and consider
V to be dimensionless. As is the usual case, the scalar field φ has the dimension of
mass. From the definition of X it turns out that X, and hence F , has dimension
M4.

The energy density in this case is given by

ρ = V (φ)(2XFX − F ). (4.4)

So substituting the forms of F and V we get

ρ = (1 + e−φ/φc)(KX −m4
PlM). (4.5)

The pressure, which is simply the Lagrangian, turns out to be

p = (1 + e−φ/φc)(KX −m2
PlL
√
X +m4

PlM). (4.6)

The equation of state parameter is given by

w =
F

2XFX − F
, (4.7)

which in our model evaluates to

w =
KX −m2

PlL
√
X +m4

PlM

KX −m4
PlM

. (4.8)

The sound speed, or the speed at which perturbations travel, is defined to be
[61]

c2
s ≡

∂p/∂X

∂ρ/∂X
=

FX
2XFXX + FX

. (4.9)

Now, the equation of motion for the k-essence scalar field is given by
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(2XFXX + FX)Ẋ + 6HFXX +
V̇

V
(2XFX − F ) = 0, (4.10)

which has been written in terms of X. If V is a constant or varies very slowly
with time so that the third term in the above equation is negligible then the situ-
ation corresponds to kinetic k-essence and the field equation can be written as

(2XFXX + FX)Ẋ + 6HFXX = 0, (4.11)

and as we saw in Section 3.2 this can be integrated exactly [34] to give the
solution

√
XFX =

k

a3
, (4.12)

where k is a constant of integration. The energy conservation equation states
that

ρ̇ = −3H(ρ+ p) = −6HFXXV. (4.13)

This shows that the fixed points of the equation correspond to the extrema of
F [12], which from Eqns. (4.1) and (4.4) yield ρ = −p. Moreover ρ decreases with
time when ρ > −p and increases when ρ < −p showing that any point corres-
ponding to ρ = −p is an attractor and, as is well known, will lead to exponential
inflation.

In our model the extrema of F corresponds to X = 0, or X = m4
Pl

L2

4K2
. The

point X = 0 is of no significance since that corresponds to energy density and
pressure which are constant in time. We take

X0 = m4
Pl

L2

4K2
, (4.14)

which leads from the definition of X, to

φ̇0 = m2
Pl

L√
2K

, (4.15)

where we take the positive sign for φ̇ . For the above value of X the energy
density and pressure turns out to be

ρ = V (φ)

(
L2

4K
−M

)
m4
Pl = −p. (4.16)
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Actually, X0 corresponds to an instantaneous attractive fixed point and X

evolves slowly away from that point, which is the analog of “slow-roll” poten-
tial driven inflation in which the potential dominates the kinetic term and evolves
slowly. Hence, in direct analogy, the above calculated values of ρ and p can be
called the slow-roll values. In our model we assume that the exponential term
inside V is much larger than 1 during the course of inflation, for which we must
have φ0/φc < 0, and also |φ0/φc| � 1. From Eq. (4.13) we can write φ0 = φ̇0t+Cφ,
where Cφ is an integration constant. This constant can have a negative value, hence
making φ0 < 0. Thus, we choose φc > 0, such that the conditions φ0/φc < 0, and
|φ0/φc| � 1 are satisfied during inflation. Since φ̇0 > 0, it follows that φ becomes
less and less negative with time. V could be quite accurately approximated as
e−φ/φc. This enables us to find the number of e-folds of expansion N , under this
slow-roll approximation as

N =

te�

ti

H dt =

φe�

φi

H
dφ

φ̇
, (4.17)

which turns out to be

N '
√

8π

3
m−1
Pl

(
L2

4K
−M

)1/2 √
2K

L
2φc

(√
V i −

√
V e

)
, (4.18)

where the subscripts ‘i’ and ‘e’ refer to the initial and final values, respectively.
The slow-roll condition for k-inflation is given by [δX/X0] � 1. Now, during

the post slow-roll stage we can write X = X0 + δX. Also, from Eq. (4.13), we have

FX
(KX −m4

PlM)
= − 1

6X

V̇

HV
. (4.19)

Retaining terms up to the first order in δX we get

δX

X0

'

1

X0

(
L2

4K
−M

)
√

3π
Lφc

X0m2
Pl

(
L2

4K
−M

)1/2√
V − K

m4
Pl

. (4.20)

Inflation ends when
δX

X0

∼ 1. Using this fact in Eq. (4.18) we find the expression

for the final value of the potential, Ve to be
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√
Ve '

mPl√
3π

1

Lφc

(
L2

4K
−M

)1/2

+
mPl√

3π

L

4Kφc

(
L2

4K
−M

)−1/2

. (4.21)

The kinematics of the inflationary era in our model may be viewed in the follow-
ing way. We start with some representative point in the (ρ, p) plane corresponding
to some initial value of φ such that the slow-roll condition is satisfied. In fact, dur-
ing the first evolutionary stage the representative point takes only a few e-folds to
reach the nearest inflationary attractor that corresponds to ρ = −p. After this initial
stage the representative point follows the post slow-roll motion, X = X0 +δX with
δX/X0 � 1, thereby staying near but not exactly on the ρ = −p line. The value of
X is positive (as we will show later in the Section on observational constraints).
Hence X slowly moves away from the value X0. As the evolution continues, the
slow-roll condition is satisfied to a less and lesser extent till a time is reached when
the slow-roll condition is actually violated (δX/X0 ∼ 1), and one naturally exits
the inflationary stage.

Now, after inflation ends we have X > X0, meaning that the time evolution
of φ is faster than during inflation, and hence its value increases very quickly and
correspondingly decreases the value of the exponential part in V , so that one gets
V ' 1. In order for such a behaviour to ensue, we must have φ/φc > 0 after
inflation is over. Since we have already chosen φc to be positive, then φ has to
become positive after inflation where previously it was negative, and this is exactly
its behaviour as pointed out earlier, i.e., φ̇0 was positive. Note that even if the ratio
φ/φc is not too big compared to 1, the exponential part of the potential will be
negligible. Thus, after the inflationary expansion is over the exponential part in V
quickly decays away (we will present an estimate of the time taken for this process
in the section on observational constraints on the model). When the exponential
term becomes quite negligible we have

V ≈ 1 , V̇ ≈ 0.

So the field equation effectively becomes of the form of Eq. (4.11) and the
dynamics can be approximated quite well by the purely kinetic form of k-essence.
On using Eq. (4.12) to find X as a function of a we get
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X =
1

K2

(
m2
Pl

L

2
+
k

a3

)2

. (4.22)

Therefore the corresponding expression for the k-essence energy density turns
out to be

ρ = m4
Pl

(
L2

4K
−M

)
+m2

Pl

kL

Ka3
+

k2

Ka6
. (4.23)

The subsequent evolution of the universe is described as follows. After the end
of inflation the universe is in a kinetic dominated period when the third term in Eq.
(4.23) dominates, which corresponds to p = ρ ∼ a−6. But this term becomes small
quickly in comparison to radiation which goes as ∼ a−4 and a period of radiation
domination in the universe ensues. The second term in Eq. (4.23) gains prominence
in the epoch of matter domination and we identify it with dark matter. But as the
universe evolves towards the present era the first term begins to dominate and acts
like a cosmological constant giving rise to the late time acceleration of the universe.
The equation of state parameter after inflation is over is given by

w =

k2

Ka6
−m4

Pl

(
L2

4K
−M

)
m4
Pl

(
L2

4K
−M

)
+m2

Pl

kL

Ka3
+

k2

Ka6

, (4.24)

with the following values of w corresponding to the various epochs:

w ≈ 1 after the end of inflation and before radiation domination

w ≈ 0 during matter domination

w → −1 as a→∞

Using Eq. (4.9) the sound speed is found to be

c2
s =

1

m2
Pl

La3

2k
+ 1

. (4.25)

From the above equation it is clear that the sound speed decreases as the
Universe expands.
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4.2 OBSERVATIONAL CONSTRAINTS ON THE MODEL

So far we have seen that the model considered by us produces the primary fea-
tures of k-inflation in the early Universe and reproduces dark matter as well as a
cosmological constant in the later period of evolution. We will now use various
observational features to constrain the parameters of our model. A notable feature
[12, 6] in our model is that the potential and the kinetic part are coupled. So
parameters that are relevant during the late time era cannot be determined inde-
pendently of the parameters relevant during the inflationary era. It is thus practical
to first carry out the analysis in the late time era and then use the calculated values
of the relevant parameters in the inflationary era. We have provided the expression
for the k-essence energy density after inflation is over in Eq. (4.23). Using the
current observed value of the cosmological constant, we get

m4
Pl

(
L2

4K
−M

)
' 10−48 (GeV)4 . (4.26)

Also, observations put the current dark matter density to be about one-third of
the current dark energy density. This enables us to write

kL

Ka3
0

≈ 1

3
m2
Pl

(
L2

4K
−M

)
, (4.27)

where the subscript ‘0’ signifies the present epoch. We know from observations
that the fraction of the current energy density contained in radiation is (ΩR)0 '
5×10−5 corresponding to the present radiation density (ρR)0 ' 6.94×10−53 (GeV)4.
Denoting the third term in Eq. (4.23) as ρk, and assuming that ρR crosses over ρk
at a redshift of z ∼ 1012 (prior to the nucleosynthesis at a redshift of 1010), we get

z2 =
(ρR)0Ka

6
0

k2
⇒ k

a3
0

=
K1/2

z
(ρR)1/2

0 . (4.28)

Now from Eqns. (4.27) and (4.28) we get

m2
Pl

L

K1/2
' 4× 10−11 (GeV)−2 . (4.29)

From Eqns. (4.28) and (4.29) it can be seen that the the cross-over between
dark matter and ρk occurs at a redshift of ∼ 109 and that between radiation and
dark matter at a redshift of ∼ 104, i.e., at the epoch of matter-radiation equality.
We also find the present value of ρk to be
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(ρk)0 =
k2

Ka6
0

=
(ρR)0

z2
≈ 6.94× 10−77 (GeV)4 . (4.30)

The sound speed at the epoch of matter-radiation equality turns out to be

(
c2
s

)
eq

=
1

m2
Pl

La3
eq

2k
+ 1

=
1

m2
Pl

La3
0

2z3
eqk

+ 1

' 4.1× 10−16. (4.31)

Now, we can re-express w from Eq. (4.24) in terms of the redshift z. Since ρk is
negligible in comparison to the other components, we have

w ≈
−
(
L2

4K
−M

)
(
L2

4K
−M

)
+m−2

Pl

kL

Ka3
0

(z + 1)3

. (4.32)

Thereafter, it is possible to find dw/dz. Its value at the current epoch, i.e., at
redshift z = 0 using Eqns. (4.26) and (4.27) turns out to be(

dw

dz

)
0

≈ 2.733× 10−28. (4.33)

One can also estimate the current value of the equation of state parameter in
our model, which using (4.32) and putting z = 0 turns out to be

w0 ≈ −0.75. (4.34)

We can further find out the value of the redshift at which the Universe started its
transition from the matter dominated decelerating era to its presently accelerating
era. Knowing that for acceleration to begin we must have w = −1/3, from Eq.
(4.32) we find that

zacc ≈ 0.817. (4.35)

Such a value for the redshift is quite compatible with present observations [67].
But, from Eqns. (4.26) and (4.29) we find that

m4
PlM = 4× 10−22 − 10−48 (GeV)4, (4.36)
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showing that a tuning of the parameter M is needed. This is expected since
it is simply a rephrasing of the coincidence problem associated with the present
window of acceleration of the Universe.

We now revisit the inflationary era for analyzing the observational constraints
pertaining to it. From Ref. [61] the spectrum of scalar density perturbations in
k-inflation is given by

P =
16

9

m−4
Pl

cs

ρ

1 + p/ρ
= −16

9

m−4
Pl

cs

√
8πG

3

ρ5/2

ρ̇

=
32
√

2

3
√

3

√
πm−1

Pl

cs

√
2Kφc
L

(
L2

4K
−M

)3/2

V
3/2
i ,

(4.37)

where in the second step we have used the energy conservation law and also
used the Friedmann equation. Using the COBE normalization

√
P ∼ 2× 10−5 and

assuming that 60 e-folds of expansion took place, we can rewrite Eq. (4.37) to get
an expression for Vi to be

√
Vi =

(27)1/6

4

c
1/3
s m

−1/3
Pl

π1/6

(
PL

Kφc

)1/3(
L2

4K
−M

)−1/2

. (4.38)

Using Eqns. (4.21) and (4.38) in Eq. (4.18) we can write

c
1/3
s φ

2/3
c =

4

(27)1/6
π1/6m

2/3
Pl

(
K

PL

)1/3

[
1√
3π

1

L

(
L2

4K
−M

)
+

1√
3π

L

4K
+

NL

23/2K

√
3

8π

]
.

(4.39)

Now from Eq. (4.9) we see that in slow-roll approximation when FX = 0 we
get c2

s = 0. But, in the post slow-roll stage, X = X0 + δX, and FX does not vanish.
To first order in δX we can write FX ≈ (FXX)0 δX. Using this in Eq. (4.9) we get

c2
s '

δX

2X0

. (4.40)

Stability requires X > 0 and we show now that this is indeed the case. From
Eqns. (4.20) and (4.38) we calculate δX/X0 when V = Vi, to get
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δX

X0

=

4K2

L2

(
L2

4K
−M

)
√

3π 4K2

L

[
1√
3π

1
L

(
L2

4K
−M

)
+ 1√

3π
L

4K
+ NL

23/2K

√
3

8π

]
−K

. (4.41)

It is to be noted that in order to evaluate the above equation the actual value of
K or L is not required, instead the ratio L/

√
K from Eq. (4.29) serves the purpose.

Substituting the various values we find that

δX

X0

' 2.748× 10−29, (4.42)

which is positive as claimed. The sound speed is therefore found to be

c2
s '

1

2

δX

X0

' 1.374× 10−29. (4.43)

Having found the sound speed and using the values of P and N , we now use
Eq. (4.29) in Eq. (4.39) to get

1

φc
√
K
' 3.23× 1015(GeV)−1. (4.44)

We now have all the parameter values to evaluate the value of V at the begin-
ning and at the end of k-inflation which we write below:

Vi ' 9.166× 1097, (4.45)

Ve ' 1.107× 1094. (4.46)

The corresponding energy densities are

ρi = Vi

(
L2

4K
−M

)
m4
Pl ' 9.166× 1049(GeV)4, (4.47)

ρe = Ve

(
L2

4K
−M

)
m4
Pl ' 1.107× 1046(GeV)4. (4.48)
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The tensor-to-scalar ratio is given by [61]

r = 24cs

(
1 +

p

ρ

)
= −24csmPl√

24π

ρ̇

ρ3/2

=

√
24

π

cs
φc

(
L2

4K
−M

)−1/2
L√
2K

1√
Vi
.

(4.49)

where in the second step we have used the energy conservation and Fried-
mann’s equation. On substituting the parameter values we get

r = 9.776× 10−16. (4.50)

The scalar spectral index can be obtained from the relation [61]

ns − 1 = −3

(
1 +

p

ρ

)
− 1

H

d

dt
ln

(
1 +

p

ρ

)
− 1

H

d

dt
ln cs

=
2ρ̇

ρH
− ρ̈

ρH
+

Ḣ

H2
− 1

H

ċs
cs
. (4.51)

To evaluate ns the values of the following quantities are required:

ρ̇

ρ
=
ρ̈

ρ̇
= − φ̇0

φc
= −m

2
Pl

φc

L√
2K

= −9.136× 104GeV,

H =

√
8πG

3
ρi = 2.771× 106GeV,

Ḣ = −4πG

3
(ρi + pi) =

4πG

9

ρ̇i
H

= −4.219× 1010(GeV)2,

ċs
cs

= 2.519× 10−94GeV.

All the above values have been calculated using the slow-roll approximation
pertaining to the beginning of k-inflation. Therefore, using these values in Eq.
(4.51) we get

ns = 0.96514. (4.52)

This value is quite close to what is predicted by models of potential driven
inflation. Equation (4.51) differs from the appropriate expression in the case of
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usual inflation by the term proportional to the derivative of the sound speed. Since
in standard inflation cs = 1, this term vanishes and one obtains ns to be very close
to 1, i.e., a scale invariant spectrum. But in k-inflation models, cs 6= 1, and a tilted
spectrum with ns < 1 is generally predicted. However, in our model this term in
Eq. (4.51) makes a vanishingly small contribution, and hence we get a spectral
index that is again quite close to 1. Only the value of the tensor-to-scalar ratio in
our model makes it distinguishable from standard inflation where typically a value
of about 0.12 to 0.15 is obtained.

Now, the duration of inflation in our model is found to be

te − ti =

φe�

φi

dφ

φ̇
=

√
2K

L
(φe − φi)m−1

Pl ≈ 6.9× 10−29s. (4.53)

After the end of inflation, the stage of kinetic dominated evolution sets in very
quickly. In order to have an idea as to how much time it takes for the exponential
part of the potential to become negligible, we assume that for argument’s sake,
X ' X0. This assumption is only made to perform a simple calculation and get an
upper bound on the time required for the exponential part to decay (the actual time
taken is much smaller since X > X0 and φ evolves more rapidly compared to its
linear evolution during inflation). The time taken after inflation for the exponential
part to attain the value e−φ/φc ' 0.01, is about 1.7× 10−27s. Thus, the time required
for the k-essence field to effectively behave as kinetic k-essence is of the order of
10−27s. This again justifies our analysis of the previous section pertaining to the post
inflationary period being dominated by the dynamics of purely kinetic k-essence.
It should be noted that the estimate for the time required for the Universe to enter
into a kinetic dominated era after inflation is actually an upper bound. In reality
the time required is much shorter since X > X0 and the scalar field evolves more
rapidly with time than during the inflationary era (the potential decreases very
quickly to assume an almost constant value).

Reheating in this model could be caused by gravitational particle production.
The process of gravitational reheating in the presence of kinetic domination by a
scalar field is not yet understood very well [70]. However, standard calculations [65,
66] give the density of particles produced at the end of inflation to be ρR ' 8.67×
1015g(GeV)4 where g is the number of fields which produce particles at this stage,
likely to be between 10 and 100. This energy density, if immediately thermalized,
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would give rise to a temperature of Te ' 9.65 × 103

(
g

g∗

)1/4

GeV, where g∗ is the

total number of species in the thermal bath and maybe somewhat higher than
g. Assuming that immediately after the end of inflation there is complete kinetic
domination so that the scalar field density falls as a6, it is estimated that in our
model the Universe has to expand by a factor of about 1015 for radiation domination
to set in. After that expansion the temperature which goes as T ∝ 1/a comes out as

T ' 9.65× 10−12

(
g

g∗

)14

GeV. So we see that the temperature is not high enough

for a successful nucleosynthesis for which a temperature around 1 MeV is needed.
Now, if we change our parameters somewhat such that the value of the redshift for
the crossover between ρR and ρk is 106, then we find that the reheat temperature

turns out to be T ' 9.65 × 10−5

(
g

g∗

)1/4

GeV which is roughly about the order

of 0.1 MeV. There have been some recent studies which indicate that very low
reheating temperatures could also be a viable option for successful nucleosynthesis
(see, for instance [71]). These ideas have to be analyzed in detail in the context
of k-essence scenarios in order to check how far gravitational reheating could be
successful in our model.

4.3 SUMMARY AND DISCUSSION

To summarize we have considered a k-essence model that produces inflationary
expansion in the early Universe by the process of k-inflation and later on generates
both dark matter and dark energy at appropriate subsequent stages. For our Lag-
rangian we have considered that form which has been widely used for k-essence
models [6, 7, 8, 9]. In contrast to the earlier model studied by us [10], the potential
and the kinetic parts of the scalar field were not decoupled, leading to coupling
between the inflationary era and the late time parameters. A significant feature of
this fact can be found in the expression for the energy density. It thus follows that
the generated cosmological constant which dominates the dynamics at late times
derives its value from inflationary parameters. It needs to be mentioned here that
our model was unable to address the coincidence problem and we also saw that
the fine-tuning problem associated with the cosmological constant reemerged as a
fine-tuning requirement of one of our model parameters.
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Our model was able to reproduce the basic features of k-inflation. Although
in general k-inflation predicts that ns < 1, our model gave rise to a value which
was nearly the same with what is obtained in standard potential driven inflation,
predicting an almost scale invariant density perturbation spectrum. But, the value
of the calculated tensor-to-scalar ratio was quite different from what is obtained
in standard inflationary models. After the inflation was over the potential quickly
became constant and we were able to approximate the model as purely kinetic
k-essence. The late time energy density and the sound speed in terms of the scale
factor a were obtained. The resultant energy density contained terms that achieved
the desired unification of dark matter and dark energy. We showed that the sound
speed calculated at the epoch of matter-radiation equality came out to be very small,
thus posing no problem for structure formation, since it further decreased as the
Universe expanded. Our estimation of the current equation of state and the redshift
at which the current acceleration of the Universe started, lie within observational
bounds. Further studies would be needed to see if gravitational reheating could be
a viable feature of such a scheme.
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CHAPTER 5

THE BACKREACTION FRAMEWORK

5.1 AVERAGED EINSTEIN EQUATIONS

In the framework developed by Buchert [40] (also see [72] for a review on this),
the Universe is considered to be filled with an irrotational fluid of dust and the
spacetime is foliated into flow–orthogonal hypersurfaces featuring the line–element

ds2 = −dt2 + gijdX
idXj, (5.1)

where the proper time t labels the hypersurfaces and X i are Gaussian normal
coordinates (locating free–falling fluid elements or generalized fundamental ob-
servers) in the hypersurfaces. gij is the full inhomogeneous three metric of the
hypersurfaces of constant proper time. Note here that in the second paper in [40],
the framework was later refined to be applicable to perfect fluid matter models.

On these hypersurfaces we want to study the evolution of compact spatial
domains D , comoving with the fluid. This latter property ensures that the domain
is frozen into the general three–metric, i.e. its shape encodes the geometrical
structure of the local inhomogeneities. One fundamental quantity characterizing
such a domain is its volume, which is the only such measure used, since we wish to
address questions related to the size of the domains and its time–derivatives only,

|D|g =

�
D
dµg, (5.2)

where dµg =
√

(3)g(t,X1, X2, X3)dX1dX2dX3. From the domain’s volume one
may define a scale factor
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aD(t) =

(
|D|g
|Di|g

)1/3

, (5.3)

encoding the average stretch of all directions of the domain. For wild changes
of the shape of the initial domain Di one might want to know more about the
evolution of other morphological characteristics to deduce directional expansion
information, and would therefore have to extend the analysis.

Concentrating on the volume and the effective scale factor alone, one can derive,
from the Einstein equations with a pressure-less fluid source, the following set of
equations governing its evolution:

3
äD
aD

= −4πG 〈ρ〉D +QD + Λ, (5.4)

3H2
D = 8πG 〈ρ〉D −

1

2
〈R〉D −

1

2
QD + Λ, (5.5)

0 = ∂t 〈ρ〉D + 3HD 〈ρ〉D , (5.6)

where the average over scalar quantities is defined as

〈f〉 D(t) =

�
D f(t,X1, X2, X3)dµg�

D dµg
= |D|−1

g

�
D
fdµg, (5.7)

and where ρ, R and HD denote the local matter density, the Ricci scalar of the
three–metric gij , and the domain dependent Hubble rateHD = ȧD/aD , respectively.
The kinematical backreaction QD is defined as

QD =
2

3

(〈
θ2
〉
D − 〈θ〉

2
D
)
− 2σ2

D, (5.8)

where θ is the local expansion rate and σ2 = 1/2σijσ
ij is the squared rate of

shear. Note that HD is defined as HD = 1/3 〈θ〉D . QD is composed of the variance
of the local expansion rates, 〈θ2〉D −〈θ〉

2
D , and the averaged shear scalar σ2

D on the
domain under consideration. For a homogeneous domain it is zero. It therefore
encodes the departure from homogeneity and is supposed to be particularly im-
portant in the late, inhomogeneous phase of the Universe at the epoch of structure
formation.

The integrability condition connecting Eqns. (5.4) and (5.5) reads
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1

a2
D
∂t
(
a2
D 〈R〉D

)
+

1

a6
D
∂t
(
a6
DQD

)
= 0, (5.9)

which already shows an important feature of the averaged equations as they
in general couple the evolution of the backreaction term, and hence extrinsic
curvature inhomogeneities (or in this picture matter inhomogeneities), to the av-
erage intrinsic curvature. Unlike in the case of a standard Friedmannian evolution
the curvature term here is not restricted to an a−2

D scaling behaviour but is dynam-
ical in the sense that it may be an arbitrary function of aD . It should be noted
that the essential effect of backreaction models is not a large magnitude of QD,
but a dynamical coupling of a non–vanishing QD to the averaged scalar curvature,
changing the temporal behaviour of this latter.

5.2 EFFECTIVE FRIEDMANNIAN FRAMEWORK

We may also recast the general equations (5.4), (5.5), (5.6) and (5.9) by appeal-
ing to the Friedmannian framework. This amounts to re–interpretation of geo-
metrical terms, that arise through averaging, as effective sources within a Fried-
mannian setting. In the present case the averaged equations may be written as
standard zero–curvature Friedmann equations for an effective perfect fluid energy
momentum tensor with new effective sources :

ρDeff = 〈ρ〉D −
1

16πG
QD −

1

16πG
〈R〉D , (5.10)

pDeff = − 1

16πG
QD +

1

48πG
〈R〉D , (5.11)

and the evolution equations become

3
äD
aD

= −4πG
(
ρDeff + 3pDeff

)
+ Λ, (5.12)

3H2
D = 8πGρDeff + Λ, (5.13)

0 = ρ̇Deff + 3HD
(
ρDeff + pDeff

)
. (5.14)

We notice that QD, if interpreted as a source, introduces a component with ‘stiff
equation of state’, pDQ = ρDQ , suggesting a correspondence with a free scalar field
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(discussed in the next section), while the averaged scalar curvature introduces
a component with ‘curvature equation of state’ pDR = −1/3ρDR. Although we are
dealing with dust matter, we appreciate a ‘geometrical pressure’ in the effective
energy–momentum tensor.

5.3 ‘MORPHED’ FRIEDMANN COSMOLOGIES

In the above introduced framework we distinguish the averaged matter source
on the one hand, and averaged sources due to geometrical inhomogeneities stem-
ming from extrinsic and intrinsic curvature (kinematical backreaction terms) on
the other. As shown above, the averaged equations can be written as standard
Friedmann equations that are sourced by both. Thus, we have the choice to con-
sider the averaged model as a (scale–dependent) ‘standard model’ with matter
source evolving in a mean field of backreaction terms. This form of the equations
is closest to the standard model of cosmology. It is a ‘morphed’ Friedmann cosmo-
logy, sourced by matter and ‘morphed’ by a (minimally coupled) scalar field, the
morphon field [73]. We write (recall that we have no matter pressure source here):

ρDeff = 〈ρ〉D + ρDφ ; pDeff = pDφ , (5.15)

with

ρDφ = ε
1

2
φ̇2
D + UD ; pDφ = ε

1

2
φ̇2
D − UD, (5.16)

where ε = +1 for a standard scalar field (with positive kinetic energy), and
ε = −1 for a phantom scalar field (with negative kinetic energy). Thus, in view of
Eq. (5.10), we obtain the following correspondence:

− 1

8πG
QD = εφ̇2

D − UD ; − 1

8πG
〈R〉D = 3UD. (5.17)

Inserting this equation into the integrability condition (5.9) then implies that
φD , for φ̇D 6= 0, obeys the (scale–dependent) Klein–Gordon equation:

φ̈D + 3HDφ̇D + ε
∂

∂φD
UD (φD, 〈ρ〉D) = 0. (5.18)

Note that the potential UD is not restricted to depend only on φD explicitly.
An explicit dependence on the averaged density and on other variables of the sys-
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tem (that can, however, be expressed in terms of these two variables) is generic.
The above correspondence allows us to interpret the kinematical backreaction ef-
fects in terms of properties of scalar field cosmologies, notably quintessence or
phantom–quintessence scenario that are here routed back to models of inhomo-
geneities. Dark Energy emerges as unbalanced kinetic and potential energies due
to structural inhomogeneities. More precisely, kinematical backreaction appears
as excess of kinetic energy density over the ‘virial balance’, while the averaged
scalar curvature of space sections is directly proportional to the potential energy
density; e.g. a void (a ‘classical vacuum’) with on average negative scalar curvature
(a positive potential) can be attributed to a negative potential energy of a morphon
field (‘classical vacuum energy’).

5.3.1 MORPHON AS k-ESSENCE

We just saw how the effects of backreaction can be related to a scalar field called
“morphon”. But the Buchert framework treats this field as a traditional scalar field
(such as quintessence) whose equation of motion is given by the Klein-Gordon
equation. We now show that it is not necessary to restrict the morphon to such be-
haviour and we can treat it as a k-essence field, i.e. a field which has non-canonical
kinetic terms in the Lagrangian.

Let us assume that the Lagrangian of the morphon has the form

L = F (X)V (φ), (5.19)

which we know to be a traditional form of k-essence Lagrangian. For this the
energy density and pressure of the morphon will look like

ρDφ = V (2XFX − F ) , (5.20)

pDφ = FV, (5.21)

using which we can write the effective energy density and pressure of Eqns.
(5.4), (5.5) and (5.6), just as before

ρDeff = 〈ρ〉D + ρDφ ; pDeff = pDφ . (5.22)
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Therefore using the above equations in (5.4) and (5.5) we see that we can
write

QD = −8πGV (XFX + F ) , (5.23)

〈R〉D = 24πGV (F −XFX) . (5.24)

Inserting these values of QD and 〈R〉D in the integrability condition (5.9) gives
us

(2XFXX + FX)Ẋ + 6HFXX +
V̇

V
(2XFX − F ) = 0, (5.25)

which as we know is the equation of motion of a k-essence field that has a
Lagrangian of the form we have chosen, and hence as stated we can take the
morphon to behave a a k-essence field. Note that although in the above example
we took the Lagrangian for the k-essence field as L = F (X)V (φ), we are certainly
not restricted to that form only. We could also have taken the Lagrangian to be
of the form L = F (X) + V (φ), or for that matter any function of φ and X, and
the morphon would still act as a k-essence field with the appropriate equation of
motion.

5.4 THE COSMIC QUARTET

We start by dividing the volume averaged Hamiltonian constraint (5.5) by the
squared volume Hubble functional HD = ȧD/aD introduced before. Then, ex-
pressed through the following set of ‘parameters’

ΩDm =
8πG

3H2
D
〈ρ〉D , (5.26)

ΩDΛ =
Λ

3H2
D
,

ΩDR = −〈R〉D
6H2
D
,

ΩDQ = − QD
6H2
D
,
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the averaged Hamiltonian constraint assumes the form of a cosmic quartet

ΩDm + ΩDΛ + ΩDR + ΩDQ = 1, (5.27)

showing that the solution space of an averaged inhomogeneous cosmology
is three–dimensional in the present framework. In this set, the averaged scalar
curvature parameter and the kinematical backreaction parameter are directly ex-
pressed through 〈R〉D and QD , respectively.

5.5 ACCELERATION AND ENERGY CONDITIONS

Let us look at the general acceleration law (5.4), and ask when we would find
volume acceleration on a given patch of the spatial hypersurface

3
äD
aD

= −4πG 〈ρ〉D +QD + Λ > 0. (5.28)

We find that, if there is no cosmological constant, the necessary condition QD >
4πG 〈ρ〉D must be satisfied on a sufficiently large scale, at least at the present
time. This requires that QD is positive, i.e. shear fluctuations are superseded by
expansion fluctuations and, what is crucial, that QD decays less rapidly than the
averaged density. It is not obvious that this latter condition could be met in view
of our remarks above. We conclude that backreaction has only a chance to be
relevant in magnitude compared with the density (e.g. as defined through the
inequality Eq. (5.28) today), if its decay rate substantially deviates from its ‘quasi–
Newtonian’ behaviour and, more precisely, its decay rate must be weaker than that
of the averaged density (or at least comparable, depending on initial data for the
magnitude of Early Dark Energy).

Another model of Dark Energy is to assume the existence of a scalar field source,
a so–called quintessence field . However, a usual scalar field source in a Friedman-
nian model, attributed e.g. to phantom quintessence that leads to acceleration, will
violate the strong energy condition ρ+ 3p > 0, i.e.:

3
ä

a
= −4πG (ρ+ 3p) = −4πG (ρH + ρφ + 3pφ) > 0. (5.29)

Previously we have introduced a mean field description of kinematical backreac-
tion in terms of a morphon field. For such an effective scalar field the strong energy
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condition is not violated for the true content of the Universe, that is ordinary dust
matter. In this line it is interesting that we can identify ‘violation’ of an effective
‘strong energy condition’ with the acceleration condition above (cf. Eqns. (5.10),
(5.15))

3
äD
aD

= −4πG
(
ρDeff + 3pDeff

)
(5.30)

= −4πG
(
〈ρ〉D + ρDφ + 3pDφ

)
= −4πG 〈ρ〉D +QD,

which has to be positive, if the acceleration condition (5.28) is met.

5.6 SEPARATION FORMULAE FOR ARBITRARY PARTI-
TIONS

So far we have focussed our attention on a single domain D, but now we will
consider D to be some kind of “global” domain that is assumed to be separated
into subregions F` , which themselves consist of elementary space entities F (α)

` that
may be associated with some averaging length scale [50]. In mathematical terms
D = ∪`F`, where F` = ∪αF (α)

` and F (α)
` ∩ F (β)

m = ∅ for all α 6= β and ` 6= m. The
average of the scalar valued function f on the domain D (5.7) may then be split
into the averages of f on the subregions F` in the form,

〈f〉D =
∑
`

|D|−1
g

∑
α

�
F(α)
`

fdµg =
∑
`

λ` 〈f〉F` , (5.31)

where λ` = |F`|g/|D|g, is the volume fraction of the subregion F`. The above
equation directly provides the expression for the separation of the scalar quantities
ρ, R and HD = 1/3 〈θ〉D. However, QD, as defined in (5.8), does not split in such a
simple manner due to the 〈θ〉2D term. Instead the correct formula turns out to be

QD =
∑
D

λ`Q` + 3
∑
` 6=m

λ`λm (H` −Hm)2 , (5.32)

where Q` and H` are defined in F` in the same way as QD and HD are defined
in D. The shear part 〈σ2〉F` is completely absorbed in Q` , whereas the variance of
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the local expansion rates 〈θ2〉D − 〈θ〉
2
D is partly contained in Q` but also generates

the extra term 3
∑
6̀=m λ`λm (H` −Hm)2. This is because the part of the variance

that is present in Q`, namely 〈θ2〉F` − 〈θ〉
2
F`, only takes into account points inside

F`. To restore the variance that comes from combining points of F` with others
in Fm, the extra term containing the averaged Hubble rate emerges. Note here
that the above formulation of the backreaction holds in the case when there is no
interaction between the overdense and the underdense subregions.

Analogous to the scale-factor for the global domain, a scale-factor a` for each
of the subregions F` can be defined such that |D|g =

∑
` |F`|g, and hence,

a3
D =

∑
`

λ`ia
3
` , (5.33)

where λ`i = |F`i |g/|Di|g is the initial volume fraction of the subregion F`. If we
now twice differentiate this equation with respect to the foliation time and use the
result for ȧ` from (5.5), we then get the expression that relates the acceleration of
the global domain to that of the sub-domains:

äD
aD

=
∑
`

λ`
ä`(t)

a`(t)
+
∑
`6=m

λ`λm (H` −Hm)2 . (5.34)

As an immediate consequence one can see that even when the subregions
decelerate, the second term of the above equation may counterbalance the first
one to lead to global accelerated expansion.

5.7 CONSISTENT SPLIT OF THE DYNAMICAL EQUATIONS

In the last section we saw how we can relate between the quantities on the subre-
gions with those on the global domain D. We now try to see how the separation
affects the evolution equations for those quantities. We therefore insert the expres-
sions (5.31) for HD, 〈ρ〉D and 〈R〉D and (5.32) for QD into (5.4), (5.5) and (5.9).
A straightforward calculation shows that the equations take the following form
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0 =
∑
`

λ`

[
8πG 〈ρ〉` −

Q` + 〈R〉`
2

+ Λ− 3H2
`

]
(5.35)

0 =
∑
`

λ`

[
−4πG 〈ρ〉` +Q` + Λ− 3

ä`(t)

a`(t)

]
(5.36)

0 =
∑
`

λ`

[
1

a2
`

∂t
(
a2
` 〈R〉`

)
+

1

a6
`

∂t
(
a6
`Q`
)]
, (5.37)

i.e. they may be split into a sum in which the equations on the subregions
take the same form as those of the global region (5.4)-(5.6) and their contribution
is weighted with the volume fraction of the respective subregion. As equations
(5.4)-(5.6) hold for an arbitrary domain D and therefore also for the subregions F`,
equations (5.35)-(5.37) show that the separation advocated in the previous section
is also consistent at the level of the evolution equations. This is not surprising as
the separation procedure is straightforward and the equations are supposed to
hold on any domain, but was, especially in view of the nonlinear form of (5.32),
not entirely clear when just looking at the formulae. The consistent split assures
that, if we have found a solution for the quantities on the subregions F` and use
the relations of the previous section to calculate those on the global domain, then
we will automatically obtain a solution of the averaged equations (5.4)-(5.6) on
this global domain.



CHAPTER 6

EFFECT OF COSMIC BACKREACTION

ON THE FUTURE EVOLUTION OF THE

UNIVERSE

We will now try to see what happens to the evolution of the Universe once the
present stage of acceleration sets. The work described in this chapter is based on
our papers [51] and [54]. We will first study the evolution of the Universe by using
the evolution equations of the Buchert framework. However, the acceleration of
the universe leads to a future event horizon from beyond which it is not possible
for any signal to reach us. The currently accelerating epoch dictates the existence
of an event horizon since the transition from the previously matter-dominated de-
celerating expansion. Since backreaction is evaluated from the global distribution
of matter inhomogeneities, the event horizon demarcates the spatial regions which
are causally connected to us and hence impact the evolution of our part of the Uni-
verse. Therefore we will investigate the consequences of backreaction in presence
of the horizon by taking into consideration the effect of the horizon in the Buchert
framework. Such an approach has remained unexplored in previous studies of back-
reaction. It may be noted that the formalism of backreaction [40, 53, 50] has been
criticized on the grounds that the average is taken on a space-like hypersurface,
while observations are made along and inside the past light cone [46]. Our present
analysis, by considering an effect due to the event horizon, introduces an element
of light cone physics from a somewhat different perspective. We will also perform
a comparative analysis between the case where we include the event horizon in
our calculations and the case where we don’t.



6.1. FUTURE EVOLUTION WITHIN THE BUCHERT FRAMEWORK 67

6.1 FUTURE EVOLUTION WITHIN THE BUCHERT FRAME-
WORK

We now try to see what happens to the evolution of the Universe once the present
stage of acceleration sets in. Note, henceforth, we do not need to necessarily assume
that the acceleration is due to backreaction [43, 50]. For the purpose of our present
analysis, it suffices to consider the observed accelerated phase of the universe [74]
that could occur due to any of a variety of mechanisms [4].

We work with a compact spatial domain D that we consider to be a “global”
domain that is large enough for a scale of homogeneity to be associated with it.
This allows us to write

|D|g =

�
D

√
−g d3X ≈ f(r)a3

F (t), (6.1)

where f(r) is a function of the comoving FRW radial coordinate r and aF is the
FRW scale-factor. From the definition of the volume average scale-factor (5.3) it
then follows that

aD =

(
f(r)

|Di|g

)1/3

aF ≡ cFaF , (6.2)

where cF is a constant in time. Thus, HF ≈ HD, where HF is the FRW Hubble
parameter associated with D. Though in general HD and HF can differ on even
large scales [50], the above approximation is valid for small metric perturbations.

Following the simplifying assumption of [50], we consider the global domain
D to be divided into a collection of overdense regionsM = ∪jMj (called ‘wall’),
with total volume |M|g =

∑
j |Mj|g and undersense regions E = ∪jE j (called

‘void’) with corresponding volume |E|g =
∑

j |E j|g, such that D =M∪ E and also
HD = λMHM + λEHE , with similar expressions for 〈ρ〉D and 〈R〉D. Since we are
essentially dealing with two subregions so Eq. (5.34) in this case becomes

äD
aD

= λM
äM
aM

+ λE
äE
aE

+ 2λMλE(HM −HE)2. (6.3)

Here λM + λE = 1 with λM = |M|/|D| and λE = |E|/|D|. We assume that the
scale-factors of the regions are respectively given by aEj = cEj t

α and aMj
= cMj

tβ,
where α, β, cMj

and cEj are constants. This then gives us
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a3
E = c3

Et
3α; a3

M = c3
Mt

3β, (6.4)

where c3
E =

∑
j c

3
Ej
|Eji |g

|Ei|g is a constant, and similarly for cM. The volume fraction

of the subdomainM is given by λM =
|M|g
|D|g

which can be rewritten in terms of the

corresponding scale-factors as λM =
a3M|Mi|g
a3D|Di|g

. Therefore the global acceleration for
this case (6.3) becomes

äD
aD

=
g3
Mh

t3β

a3
D

β(β − 1)

t2
+

(
1−

g3
Mh

t3β

a3
D

)
α(α− 1)

t2

+2
g3
Mh

t3β

a3
D

(
1−

g3
Mh

t3β

a3
D

)(
β

t
− α

t

)2

, (6.5)

where g3
Mh

=
λM0

a3D0

t3β0
is a constant. We obtain numerical solutions of the above

equation for various parameter values (see curves (ii) and (iv) of Fig. 6.1). The
expansion factor β for the overdense subdomain (wall) is chosen to lie between
1/2 and 2/3 (since the expansion is assumed to be faster than in the radiation
dominated case, and is upper limited by the value for matter dominated expansion).

Note here that using our ansatz for the subdomain scale factors given by Eq.
(6.4), one may try to determine the global scale factor through Eq. (5.33). In order
to do so, one needs to know the initial volume fractions λ`i which are in turn related
to the cE and cM. However, in our approach based upon the Buchert framework
[40, 41, 50] we do not need to determine cE and cM, but in stead, obtain from Eq.
(6.5) the global scale factor numerically by the method of recursive iteration, using
the value λM0 = 0.09 determined through numerical simulations in the earlier
literature [50]. We later compare these solutions for the global scale factor with
the solutions of the model with an explicit event horizon studied in Section 6.2.3.

6.1.1 BACKREACTION AND SCALAR CURVATURE

It is of interest to study separately the behaviour of the backreaction term in the
Buchert model [40, 50]. The backreaction QD is obtained from (5.4) to be

QD = 3
äD
aD

+ 4πG 〈ρ〉D . (6.6)
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Figure 6.1: The dimensionless global acceleration parameter äD
aDH

2
D

, plotted vs. time
(in units of t/t0 with t0 being the current age of the Universe ). The parameter
values used are: (i) α = 0.995, β = 0.5, (ii) α = 0.995, β = 0.5, (iii) α = 1.02,
β = 0.66, (iv) α = 1.02, β = 0.66. (The curves (i) and (iii) correspond to the case
when an event horizon is included in the analysis in Section 6.2.3).

Note that we are not considering the presence of any cosmological constant Λ

as shown in (5.4). We can assume that 〈ρ〉D behaves like the matter energy density,
i.e. 〈ρ〉D = cρ

a3D
, where cρ is a constant. Now, observations tell us that the current

matter energy density fraction (baryonic and dark matter) is about 27% and that
of dark energy is about 73%. Assuming the dark energy density to be of the order
of 10−48(GeV)4, we get 〈ρ〉D0

≈ 3.699× 10−49(GeV)4. Thus, using the values for the
global acceleration computed numerically, the future evolution of the backreaction
term QD can also be computed (see curves (ii) and (iv) of Fig. 6.2, where we have
plotted the backreaction density fraction ΩDQ = − QD

6H2
D

). Once we compute the
backreaction it is straightforward to calculate the scalar curvature 〈R〉D as

〈R〉D = 16πG 〈ρ〉D −QD − 6H2
D. (6.7)
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Figure 6.2: Global backreaction density fraction vs. time. The parameter values
used are the same as in Fig. 6.1.

6.1.2 EFFECTIVE EQUATION OF STATE

As we have seen before, we can rewrite the Buchert equations in the standard
form of Friedmann equations by re-interpreting the geometrical terms as effective
sources in the Friedmann equation. We therefore get

3
äD
aD

= −4πG
(
ρDeff + 3pDeff

)
,

3H2
D = 8πGρDeff , (6.8)

where the effective energy density and pressure are defined as

ρDeff = 〈ρ〉D −
1

16πG
QD −

1

16πG
〈R〉D,

pDeff = − 1

16πG
QD +

1

48πG
〈R〉D. (6.9)



6.1. FUTURE EVOLUTION WITHIN THE BUCHERT FRAMEWORK 71

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8

Ω
D R

t/t0

(i)
(ii)

(iii)
(iv)

Figure 6.3: Global scalar curvature density fraction, ΩDR plotted vs. time. The para-
meter values for curves (i) and (ii) are α = 0.995, β = 0.5 , and for curves (iii) and
(iv) are α = 1.02, β = 0.66.

Note that as in (6.6), here also we are not considering the presence of any
cosmological constant Λ. In this sense, QD and 〈R〉D may be combined to some
kind of dark fluid component that is commonly referred to as X-matter. One quantity
characterizing this X-matter is its equation of state given by

wDΛ,eff =
pDeff

ρDeff − 〈ρ〉D
=
QD − 1

3
〈R〉D

QD + 〈R〉D
=

ΩDQ − 1
3
ΩDR

ΩDQ + ΩDR
, (6.10)

which is an effective one due to the fact that backreaction and curvature give
rise to effective energy density and pressure. We plot this effective equation of state
by computing its value numerically (see curves (ii) and (iv) of Fig. 6.4), and later
we will compare the results with those obtained by considering the effect of an
event horizon.
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Figure 6.4: Effective equation of state vs. time. The parameter values used are: (i)
α = 0.995, β = 0.5, (ii) α = 0.995, β = 0.5, (iii) α = 1.02, β = 0.66, (iv) α = 1.02,
β = 0.66

6.2 EFFECT OF EVENT HORIZON

As already stated, we do not need to assume that the current acceleration of the
Universe is caused by cosmic backreaction [43, 50]. For the purposes of our analysis
it suffices to consider the present acceleration to be caused by any of a variety
of mechanisms [4]. Given that we are undergoing a stage of acceleration since
transition from an era of structure formation, our aim here was to explore the
subsequent evolution of the Universe due to the effects of backreaction in presence
of the cosmic event horizon.

In the same spirit as considering aD ≈ cFaF , we are able to write the expres-
sion for the event horizon, which forms at the onset of acceleration, to a good
approximation by

rh = aD

� ∞
t

dt′

aD(t′)
, (6.11)
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although spatial and light cone distances and corresponding accelerations can
be different, as shown explicitly in the framework of Lemaitre–Tolman–Bondi (LTB)
models [75]. The concept of the event horizon just ensures that the effect of backre-
actions are computed by taking into account only the causally connected processes,
but leaving out the processes that are not causally connected, i.e., the effect of
inhomogeneities from regions that lie outside the event horizon. Now, from its very
definition the event horizon is observer dependent. For example, the event horizon
for an observer ‘A’ based, say, in our group of local galaxies, is different from the
event horizon for another hypothetical observer ‘B’ based, say, somewhere in a
very distant region of the universe. This means that certain regions in the universe
that are causally connected to ‘A’ may not be connected to ‘B’, and vice-versa. The
regions not causally connected to ‘A’ have no impact on the physics, i.e., the space-
time metric for ‘A’ is unaffected by the backreaction from inhomogeneities at those
regions. Hence, in a two scale void-wall model that we are using, the event horizon
has to be chosen with respect to either ‘A’ (say, wall), or ‘B’ (say, void). However, the
important assumption here is that there is indeed a scale of global homogeneity
which lies within the horizon volume, and the physics is translationally invariant
over such large scales. The void-wall symmetry of Eq. (6.3) thereby ensures that
the conclusions are similar whether one chooses to define the event horizon with
respect to the wall or with respect to the void.

Since an event horizon forms only those regions ofD that are within the horizon
are accessible to us. Hence in this case an apparent volume fraction, given by
λMh

=
a3M|Mi|g

4
3
πr3h

, is introduced. From equation (6.4) it then follows that

λMh
=
c3
Mh

t3β

r3
h

, (6.12)

where c3
Mh

= c3
M|Mi|g/4

3
π is a constant. Normalizing the total accessible

volume in the presence of the event horizon, we can write

λEh = 1− λMh
, (6.13)

where λEh is the apparent volume fraction for the subdomain E . It hence follows
that the global acceleration equation (5.34) is now given by
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äD
aD

=
c3
Mh

t3β

r3
h

β(β − 1)

t2
+

(
1−

c3
Mh

t3β

r3
h

)
α(α− 1)

t2

+2
c3
Mh

t3β

r3
h

(
1−

c3
Mh

t3β

r3
h

)(
β

t
− α

t

)2

. (6.14)

6.2.1 EVOLUTION IN A TOY MODEL

In order to obtain the future evolution of the universe with backreaction in presence
of the event horizon, one has to solve the above equation for the scale-factor with
the event horizon rh given by equation (6.11). We will eventually obtain numerical
solutions of the above integro-differential equations, however, we find that it is
instructive to first obtain some physical insight of the evolution by taking recourse
to a simple approximation.

To this end, let us for the moment model the onset of the present accelera-
tion of the Universe by an exponential expansion, keeping our analysis close to
observations. Specifically, we set aD ∝ eHDt in equation (6.11) only. (We will see
later that this rather crude approximation does indeed give rise to results that
are qualitatively similar to the ones obtained through numerical analysis.) Using
HF = HD, where HF is the FRW Hubble parameter associated with D, it follows
that rH = H−1

F , a constant which we substituted in equation (6.14). With this
substitution, the global acceleration äD vanishes at times given by

t3β =
r3
h

4 (β − α) c3
Mh

[
(3β − α− 1)±

√
(3β − α− 1)2 + 8α (α− 1)

]
. (6.15)

The scale-factor of the ‘wall’ grows as tβ, where 1/2 ≤ β ≤ 2/3. The above
equation corresponds to real time solutions for α ≥ 1

3

[
(β + 1) + 2

√
2β (1− β)

]
.

We will now consider two separate cases and describe the evolution of the
Universe accordingly.

Case I: α < 1 and β ≤ 2/3. There exist two real solutions (6.15) correspond-
ing to two values of time when the global acceleration vanishes. In Fig. 6.5, we
have plotted a dimensionless global acceleration parameter äD

aDH
2
0

with time using
equation (6.14). The curves (i) and (ii) correspond to this case showing that the
Universe first enters the epoch of acceleration due to backreaction, which sub-
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sequently slows down and finally vanishes at the onset of another decelerating era
in the future.

Case II: α ≥ 1 and β ≤ 2/3. From (6.15) it follows that there is only one real
solution (minus sign for the square root). This case models the Universe which
accelerates due to some other mechanism (not backreaction), but subsequently
enters an epoch of deceleration due to backreaction of inhomogeneities in the
presence of the event horizon [see curves (iii) and (iv) of Fig. 6.5].

The plots in Fig. 6.5 were done taking the standard values of the parameters
rh = H−1

D0
= 4.36×1017 s, while choosing the appropriate range of the parameters α

and β, as given in the figure caption. Based on the N-body simulation values used in
[50] we also take λMh0

= 0.09. Using the relation zT = exp [HD0 (t0 − tT )]−1 where
tT corresponds to the transition time in the past, the redshifts for the transition
could be estimated. For example, for the data used in curve (i), the transition
from deceleration to acceleration occurs at zT ' 0.844, and for curve (ii) we have
zT ' 0.914 [which are close to the Λ Cold Dark Matter (CDM) value for the standard
transition redshift [67]].

6.2.2 FUTURE DECELERATION

We now study the acceleration equation (6.14) numerically without assuming a
priori any behaviour for the horizon. Keeping with the spirit of our analysis, we
assume that the Universe has entered the accelerated stage and thus a cosmic event
horizon has formed. This ensures that rh defined by (6.11) will be finite valued,
enabling us to replace the integral equation (6.11) by

ṙh =
ȧD
aD
rh − 1. (6.16)

Thus, the evolution of the scale-factor is now governed by the set of coupled
differential equations (6.14) and (6.16). We numerically integrate these equations
by using as an ‘initial condition’ the observational constraint q0 ≈ −0.7, where
q0 is the current value of the deceleration parameter, and using the solution for
the scale-factor plot the global acceleration versus time in Fig. 6.6 [thus, all the
curves in Fig. 6.6 are set to intersect at the point (t0, q0)]. The values of the other
parameters including α and β are chosen to be the same as in the corresponding
curves of the exponential case. As can be seen from Fig. 6.6, the nature of the plots
is quite similar to the ones that are obtained in the case assuming a constant event
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Figure 6.5: The dimensionless global acceleration parameter äD
aDH

2
0

is plotted versus
time (s) assuming a constant horizon. The values for the various parameters used
are (i) α = 0.995, β = 0.5, (ii) α = 0.999, β = 0.6, (iii) α = 1.0, β = 0.5 and (iv)
α = 1.02, β = 0.66.

horizon, with the α > 1 curves signifying only one transition between acceleration
and deceleration in the future. The differences in the various slopes and also in
the scale for the dimensionless global acceleration parameter in the two cases arise
as a result of the approximation of constant horizon used in the former, as well as
due to the choice of the condition q0 ≈ −0.7 used in the latter.

6.2.3 A DIFFERENT FRAMEWORK FOR THE EVENT HORIZON

Here we will describe a slightly different approach in taking into consideration the
effect of the event horizon on the Buchert framework. Since an event horizon forms,
only those regions of D that are within the event horizon are causally accessible
to us. We hence define a new fiducial global domain as that contained within the
horizon, which naturally is smaller than the original global domain D that we dealt
with in Section 6.1. We assume that the entire Buchert formalism, as outlined in
Chapter 5, holds in this new global domain. Note that even if conservation of total
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Figure 6.6: The dimensionless global acceleration parameter äD
aDH

2
0

is plotted versus
time (s) as obtained through numerical integration, with the ‘initial condition’ of
q0 = −0.7. The values for the various parameters used are chosen to be the same
as in the corresponding plots of Fig. 6.5.

rest mass is not strictly or exactly obeyed inside this fiducial global domain, the
magnitude of violation is assumed to be rather small since the volume and mass
contained within the event horizon is huge, and inflow or outflow is assumed to
be a rather insignificant fraction of the total amount. Therefore, in our subsequent
analysis we work under the assumption that the Buchert framework is valid up to
this approximation. Denoting this domain as D̃, and the corresponding volume as∣∣∣D̃∣∣∣

g
, the volume scale-factor is defined as

a3
D̃ =

∣∣∣D̃∣∣∣
g∣∣∣D̃i∣∣∣
g

=
4
3
πr3

h∣∣∣D̃i∣∣∣
g

, (6.17)

where
∣∣∣D̃i∣∣∣

g
is the volume of the fiducial global domain at some initial time,

which we can take to be the time when the transition from deceleration to accel-
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eration occurs. The average of a scalar valued function (Eq. (5.7)) in D̃ will be
written as

〈f〉 D̃(t) =

�
D̃ f(t,X1, X2, X3)dµg�

D̃ dµg
= |D̃|−1

g

�
D̃
fdµg. (6.18)

The Einstein equations (5.4), (5.5) and (5.6) are also assumed to hold in this
new domain, after we replace D with D̃ in the equations. The domain D̃ is con-
sidered to be divided into several subregions and the average of the scalar valued
function f on the domain D̃ can then be split into the averages of f on the subre-
gions F̃` in the form

〈f〉D̃ =
∑
`

|D̃|−1
g

∑
α

�
F̃(α)
`

fdµg =
∑
`

λ` 〈f〉F̃` , (6.19)

where λ` = |F̃`|g/|D̃|g, is the volume fraction of the subregion F̃`. Just like
in Section 6.1 here also we consider the global domain D̃ to be divided into a
collection of overdense regionsM = ∪jMj, with total volume |M|g =

∑
j |Mj|g,

and underdense regions E = ∪jE j with total volume |E|g =
∑

j |E j|g. We also
assume that the scale-factors of the regions E and M are, respectively, given by
aE = cEt

α and aM = cMt
β where α, β, cE and cM are constants. The volume fraction

of the subdomainM is given by λM = |M|g
|D̃|g

, which can be rewritten in terms of the

corresponding scale factors as λM =
a3M|Mi|g
a3
D̃
|D̃i|g

.

We can then find the acceleration of this new global domain D̃, just like we did
in Section 6.1. So in this case the global acceleration for D̃ is given by

äD̃
aD̃

=
c̃3
Mt

3β

a3
D̃

β(β − 1)

t2
+

(
1− c̃3

Mt
3β

a3
D̃

)
α(α− 1)

t2

+2
c̃3
Mt

3β

a3
D̃

(
1− c̃3

Mt
3β

a3
D̃

)(
β

t
− α

t

)2

. (6.20)

But we can see from (6.17) that aD̃ ∝ rh, so we can write äD̃
aD̃

= r̈h
rh

and hence
the above equation can be written as
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r̈h
rh

=
c3
Mh

t3β

r3
h

β(β − 1)

t2
+

(
1−

c3
Mh

t3β

r3
h

)
α(α− 1)

t2

+2
c3
Mh

t3β

r3
h

(
1−

c3
Mh

t3β

r3
h

)(
β

t
− α

t

)2

. (6.21)

Note here that the global domain D̃ is a fiducial one defined with respect to
the observer-dependent event horizon for the purpose of our intermediate analysis,
and ultimately we are interested to obtain the evolution of the global domain D.
In order to get the acceleration of the global domain D we first convert (6.11) to a
differential form,

ṙh =
ȧD
aD
rh − 1. (6.22)

Thus, the evolution of the scale-factor aD is now governed by the set of coupled
differential equations (6.21) and (6.22). We numerically integrate these equations
by using as an ‘initial condition’ the observational constraint q0 = −0.7, where q0 is
the current value of the deceleration parameter. The global acceleration obtained
from these equations is plotted in Fig. 6.1 (curves (i) and (iii)). The expression for
q0 is a completely analytic function of α, β and t0, but we since we are studying the
effect of inhomogeneities therefore the Universe cannot strictly be described based
on a FRW model and hence the current age of the Universe (t0) cannot be fixed
based on current observations which use the FRW model to fix the age. Instead
for each combination of values of the parameters α and β we find out the value
of t0 for our model from (6.20) by taking q0 = −0.7. Note that we use the same
technique for finding t0 in Section 6.1, where we use (6.5).

6.3 DISCUSSIONS

Let us now compare the nature of acceleration of the Universe for the two models
described respectively, in Sections 6.1 and 6.2.3. The global acceleration for the
two models have been plotted in Fig. 6.1. Here curves (i) and (iii) are for the case
when an event horizon is included, and curves (ii) and (iv) correspond to the case
without an event horizon. For α < 1 the acceleration becomes negative in the future
for both the cases. The acceleration reaches a much greater value when no event



CHAPTER 6. EFFECT OF BACKREACTION ON THE UNIVERSE’S EVOLUTION 80

horizon is present and that too very quickly, but decreases much more gradually
than when an event horizon is included. This behaviour could be due to the fact
that the inclusion of the event horizon somehow limits the global volume of domain
D in such a way that the available volume of the underdense region E is lesser than
when an event horizon is not included. This causes the overdense regionM to start
dominating much earlier and thus causing global deceleration much more quickly.
When α > 1 the acceleration decreases and reaches a positive constant value
asymptotically when an event horizon is not included (curve (iv)), and also when
it is included (curve (iii)). Here also we can see that when we include an event
horizon in our calculations then there is much more rapid deceleration, the reason
for which is mentioned above. Initially the curves for the two cases are almost
identical qualitatively, but later on they diverge due to the faster deceleration for
the case when an event horizon is included.

A similar comparison of the backreaction for the two models is presented in
Fig. 6.2. From the expression of ΩDQ and (5.8) it can be seen that the backreaction
will be dominated by the variance of the local expansion rate θ. Here we observe
that even for the model where an event horizon is not included, ΩDQ is negative for
the duration over which the acceleration is positive. For α < 1 the backreaction
density first reaches a minimum and then keeps on rising. For the case where
an event horizon is included (curve (i)) the backreaction density remains almost
constant after reaching a minimum but then when it rises it does so very rapidly
as compared to the case where an event horizon is not included (curve (ii)). For
α > 1 the backreaction density keeps on rising monotonically. Here curves for both
the models are initially very similar qualitatively but later on they diverge.

When we look at Fig. 6.3, where the scalar curvature density has been plotted
we observe that the scalar curvature turns out to be negative for the duration when
the Universe is in accelerated phase, which is what we expect from our knowledge
of FRW cosmology. For α < 1 the curvature density increases to a maximum and
then decreases, the rise to the maximum being much more fast for the case where
an event horizon is not included (curve (ii)) whereas the fall from the maximum
being much more fast for the case where the event horizon is included (curve (i)).
For α > 1 the curvature density keeps on decreasing monotonically for both the
cases.

We next consider the effective equation of state wDΛ,eff (Fig. 6.4). It remains
negative for the entire duration over which the acceleration is positive. For α <
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Figure 6.7: The range of parameters α and β for which future deceleration takes
place, shown within the respective contours for the curves (i) and (iii) correspond-
ing to the case with an event horizon, and the curves (ii) and (iv) corresponding
to the case where an event horizon is not considered. The value of λM0 for the
curves (i) and (ii) is 0.15 and for curves (iii) and (iv) is 0.2. The shaded region
corresponds to the curve (iv) demarcating the parameter space for this case when
acceleration vanishes in finite future time.

1, wDΛ,eff first reaches a minimum and then keeps on rising. The falling to the
minimum is much faster for the model where an event horizon is not included
(curve (ii)) whereas for the case with an event horizon the equation of state remains
almost constant after reaching the minimum but then rises very rapidly (curve(i)).
For α > 1 the curves for the two cases are very similar initially qualitatively (again
like backreaction plots) but later on they diverge.

From our analysis so far it is clear that the acceleration of the Universe could
become negative in the future for certain values of the parameters α and β, which
represent the growth rates of the scale factors corresponding to the void and wall,
respectively. The range of values of α and β for which a future transition to decel-
eration is possible, is depicted in Fig. 6.7. We provide a contour plot of α versus
β demarcating the range in parameter space (inside of the contours) for which
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acceleration vanishes in finite future time. We see that the curves for the model
with an event horizon (curves (i) and (iii)) have almost the same value of α for
various values of β . This shows that for this case there is no dependence on the
value of β to make the acceleration negative in the future. For the case where there
is no event horizon (curves (ii) and (iv)), initially the values of α are the same for
various values of β, but later on the values of α begin to change and increases as
β increases. Since the acceleration has no chance of becoming negative when we
have α > 1, therefore the maximum limit of α for all the cases is depicted by the
line α = 1.

6.4 SUMMARY

To summarize, in this work we performed a detailed analysis of the various aspects
of the future evolution of the presently accelerating Universe in the presence of
matter inhomogeneities. The backreaction of inhomogeneities on the global evol-
ution is calculated within the context of the Buchert framework for a two-scale
non-interacting void-wall model [40, 41, 53, 50]. We first analyzed the future
evolution using the Buchert framework by computing various dynamical quantit-
ies such as the global acceleration, strength of backreaction, scalar curvature and
equation of state. Though in this case we did not consider explicitly the effect of
the event horizon, it may be argued that a horizon scale is implicitly set by the
scale of global homogeneity labelled by the global scale-factor. We show that the
Buchert framework allows for the possibility of the global acceleration vanishing at
a finite future time, provided that none of the subdomains accelerate individually
(both α and β are less than 1).

We next considered in detail a model with an explicit event horizon, for which
we described two approaches, the first was presented in [51] and the second in
[54]. The observed present acceleration of the universe dictates the occurrence of a
future event horizon since the onset of the present accelerating era. It may be noted
that though the event horizon is observer dependent, the symmetry of the equation
(6.3) ensures that our analysis would lead to similar conclusions for a ‘void’ centric
observer, as it does for a ‘wall’ centric one. We showed that the presence of the
cosmic event horizon causes the acceleration to slow down significantly with time.
Our results indicate the fascinating possibility of backreaction being responsible
for not only the present acceleration as shown in earlier works [43, 50], but also
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leading to a transition to another decelerated era in the future. Another possibility
following from our analysis is that the Universe is currently accelerating due to a
different mechanism [4], but with backreaction [40, 53, 50] later causing accel-
eration to slow down. Our prediction of the future slowing down of acceleration
seems to fit smoothly with the earlier era of structure formation and the transition
to acceleration in the standard ΛCDM model, as shown here (transition redshift
zT ≈ 0.8). In order to understand better the underlying physics behind the slowing
down of the global acceleration, we explored the nature of the global backreaction,
scalar curvature and effective equation of state. We then provided a quantitative
comparison of the evolution of these dynamical quantities of this model with the
case when an event horizon is not included.

Our analysis showed that, in comparison with the model without an event
horizon, during the subsequent future evolution the global acceleration decreases
more quickly at late times when we include an event horizon. The reason for this
effect is that in the latter model an effective reduction of the volume fraction for
the void leads to the overdense region starting to dominate much earlier and hence,
causes faster deceleration of the universe. We also found that the acceleration does
not vanish in finite time, but in stead goes asymptotically to a constant value for
α > 1 for both the cases. Nonetheless, when α > 1, the curves for acceleration,
backreaction, scalar curvature, and effective equation of state for both the cases
are very similar qualitatively and only diverge later on. We finally demarcated the
region in the parameter space of the growth rates of the void and the wall, where
it is possible to obtain a transition to deceleration in the finite future.

Before concluding, in context of the formalism used in the present work it may
be worthwhile to recapitulate some of the present debate in the literature regarding
averaging on a space-like hypersurface [40, 53, 50] as compared to taking the
average on the past light cone. The usefulness of the expansion rate averaged on
any hypersurface is determined by relating it to observed quantities. It has been
observed that the redshift and distance can be expressed in terms of the average
geometry alone, provided that the contribution of the null shear is negligible [76].
Observationally, the shear is known to be indeed small [77]. Nonetheless, it has
been claimed that neither averaging on a constant time hypersurface nor light cone
averaging is easy to connect with the observations corresponding to parameters of
the ΛCDM model [78]. The task of developing a procedure for light cone averaging
is an ambitious programme and till date there is no standard formalism to do so.
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In a recent paper, three different types of light cone averaging have been proposed
[79], though much work remains to be done in order to apply their technique to the
problem of cosmic acceleration. On the other hand, our present work introduces
an element of light cone physics from another perspective by considering an effect
due to the event horizon.



CHAPTER 7

BACKREACTION WITH MULTIPLE

DOMAINS

So far we have studied the effects of cosmic backreaction within the Buchert frame-
work using a simple two-scale model [51], and our model indicated the possibility
of a transition to a future era. The Buchert framework has been further extended
in [50] so as to facilitate the study of backreaction in the case where the universe
is considered to be divided into multiple domains and subdomains. But the model
that was considered in [50] was a simple model consisting of one overdense subdo-
main and one underdense subdomain, like that used in [51]. Such a simple model
is attractive because it simplifies the evolution equations and eases the process of
understanding the effect of backreaction on the evolution of the Universe. But the
real Universe cannot be partitioned simply into one overdense subdomain and one
underdense subdomain. To the best of our knowledge, so far there has been no
study on the effect of backreaction from inhomogeneities by considering multiple
subdomains. Using the formalism proposed in [50], in the present work, which
is based on our paper [80], we improve upon our previous two-scale model and
consider the Universe as a global domain D which is partitioned into multiple
overdense and underdense regions, and all these subdomains are taken to evolve
differently to each other. This is done in order to recreate the real Universe as much
as possible in our simple model. Our aim here is to study the future evolution of
the Universe by taking into consideration its current accelerated expansion. The
accelerated expansion of the Universe can be assumed to be caused by backreaction
or any other mechanism [4]. We consider two different partitioning cases of the
Universe and explore the future evolution of the Universe for these two cases and
then perform a comparative analysis for the two.
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7.1 FUTURE EVOLUTION

We consider D to be partitioned into equal numbers of overdense and underdense
domains. We label all overdense domains asM (called ‘Wall’) and all underdense
domains as E (called ‘Void’), such that D = (∪jMj) ∪ (∪jE j). In this case one
obtains HD =

∑
j λMj

HMj
+
∑

j λEjHEj , with similar expressions for 〈ρ〉D and
〈R〉D and also

∑
j λj = 1. For such a partitioning the global acceleration (5.34)

can be written as

äD
aD

=
∑
j

λMj

äMj

aMj

+
∑
j

λEj
äEj
aEj

+
∑
j 6=k

λMj
λMk

(HMj
−HMk

)2

+
∑
j 6=k

λEjλEk(HEj −HEk)2

+2
∑
j, k

λMj
λEk(HMj

−HEk)2. (7.1)

We assume that the scale-factors of the regions E j and Mj are, respectively,
given by aEj = cEj t

αj and aMj
= cMj

tβj where αj, βj, cEj and cMj
are constants.

The volume fraction of the subdomain Mj is given by λMj
= |Mj |g

|D|g , which can

be rewritten in terms of the corresponding scale factors as λMj
=

a3Mj
|Mj

i |g
a3D|Di|g

, and
similarly for the E j subdomains. We therefore find that the global acceleration
equation (7.1) becomes

äD
aD

=
∑
j

g3
Mj
t3βj

a3
D

βj(βj − 1)

t2
+
∑
j

g3
Ej t

3αj

a3
D

αj(αj − 1)

t2

+
∑
j 6=k

g3
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+
∑
j 6=k

g3
Ej t

3αj

a3
D

g3
Ekt

3αk

a3
D

(αj
t
− αk

t

)2
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∑
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(
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t
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, (7.2)
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Figure 7.1: The dimensionless global acceleration parameter äD
aDH

2
0
, plotted vs. time

(in units of t/t0 with t0 being the current age of the Universe ). In curves (i) and (ii)
the value of α is in the range 0.990− 0.999 and that of β is in the range 0.58− 0.60.
In curves (iii) and (iv) the value of α is in the range 1.02− 1.04 and that of β is in
the range 0.58− 0.60

where g3
Mj

=
λMj0

a3D0

t
3βj
0

and g3
Ej =

λEj0
a3D0

t
3αj
0

are constants.

We will perform a comparative study of two cases where (i) the global domain
D is considered to be divided into 50 overdense and underdense subdomains
each and (ii) 100 overdense and underdense subdomains each. We will obtain
numerical solutions of equation (7.2) for various ranges of parameter values. In
order to do this we consider the range of values for the parameters αj and βj

as a Gaussian distribution, which is of the form 1
σ
√

2π
exp

[
− (x−µ)2

2σ2

]
, where σ is

the standard deviation and µ is the mean (the range of values corresponds to
the full width at half maximum of the distribution). We also assign values for
the volume fractions λMj

and λEj based on a Gaussian distribution and impose
the restriction that the total volume fraction of all the overdense subdomains at
present time should be 0.09, a value that has been determined through numerical
simulations in the earlier literature [50]. Note here that using our ansatz for the
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Figure 7.2: Here also äD
aDH

2
0

is plotted vs. time. In curves (i) and (ii) the value of α
lies in the range 0.990− 0.999 and that of β is in the range 0.58− 0.60. For curves
(iii) and (iv) the value of α is in the range 0.990−0.999 and that of β is in the range
0.55− 0.65

subdomain scale factors one may try to determine the global scale factor through
Eq. (5.33). In order to do so, one needs to know the initial volume fractions λ`i
which are in turn related to the cEj and cMj

. However, in our approach based
upon the Buchert framework [40, 41, 50] we did not need to determine cEj and
cMj

, but instead, obtained from Eq. (7.2) the global scale factor numerically by
the method of recursive iteration, using as an ‘initial condition’ the observational
constraint q0 = −0.7, where q0 is the current value of the deceleration parameter.
The expression for q0 is a completely analytic function of αj, βj and t0, but since we
are studying the effect of inhomogeneities therefore the Universe cannot strictly
be described based on a FRW model and hence the current age of the Universe (t0)
cannot be fixed based on current observations which use the FRW model to fix the
age. Instead for each combination of values of the parameters αj and βj we find
out the value of t0 for our model from (7.2) by taking q0 = −0.7.



7.1. FUTURE EVOLUTION 89

-6

-5

-4

-3

-2

-1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Ω
D Q

t/t0

(i)
(ii)

(iii)
(iv)

Figure 7.3: Global backreaction density ΩDQ plotted vs. time (in units of t/t0). In
curves (i) and (ii) the value of α is in the range 0.990− 0.999 and that of β is in the
range 0.58− 0.60. In curves (iii) and (iv) the value of α is in the range 1.02− 1.04
and that of β is in the range 0.58− 0.60

It is of interest to study separately the behaviour of the backreaction term in
the Buchert model [40, 50]. The backreaction QD is obtained from (5.4) to be

QD = 3
äD
aD

+ 4πG 〈ρ〉D . (7.3)

Note that we are not considering the presence of any cosmological constant Λ

as shown in (5.4). We can assume that 〈ρ〉D behaves like the matter energy density,
i.e. 〈ρ〉D = cρ

a3D
, where cρ is a constant. Now, observations tell us that the current

matter energy density fraction (baryonic and dark matter) is about 27% and that
of dark energy is about 73%. Assuming the dark energy density to be of the order
of 10−48 (GeV )4, we get ρD0 w 3.699× 10−49 (GeV )4. Thus, using the values for the
global acceleration computed numerically, the future evolution of the backreaction
term QD can also be computed (see Figs. 7.3 and 7.4, where we have plotted the
backreaction density fraction ΩDQ = − QD

6H2
D

).
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Figure 7.4: Here also ΩDQ is plotted vs. time. In curves (i) and (ii) the value of α lies
in the range 0.990− 0.999 and that of β is in the range 0.58− 0.60. For curves (iii)
and (iv) the value of α is in the range 0.990 − 0.999 and that of β is in the range
0.55− 0.65

7.2 DISCUSSIONS

Let us now compare the nature of acceleration of the Universe for the two cases
described in the previous section. The global acceleration for the two cases have
been plotted in Figs. 7.1 and 7.2. In both the figures curves (i) and (iii) are for
the case where D is partitioned into 50 overdense and underdense subdomains
each, and curves (ii) and (iv) correspond to the case where D is partitioned into
100 overdense and underdense subdomains each. The values for the expansion
parameters βj of the overdense subdomains is taken to lie between 1/2 and 2/3
since the expansion is assumed to be faster than in the radiation dominated case,
and is upper limited by the value for matter dominated expansion. In Fig. 7.1 the
behaviour of global acceleration is shown for values of αj < 1 and also αj > 1,
keeping the range of values of βj quite narrow and also the same for all four curves.
We have kept the value of αj close to 1 when αj < 1 because if αj is less than a
certain value, which depends on the value of βj, then the acceleration becomes
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undefined as we do not get real solutions from (7.2). In order to demonstrate this
fact analytically let us consider a toy model where D is divided into one overdense
subdomainM and one underdense subdomain E . In this case (7.2) can be written
as

äD
aD

=
g3
Mt

3β

a3
D

β(β − 1)

t2
+
g3
Et

3α

a3
D

α(α− 1)

t2

+2
g3
Mt

3β

a3
D

g3
Et

3α

a3
D

(
β

t
− α

t

)2

. (7.4)

Now we must have λM + λE = 1, so we can write g3E t
3β

a3D
= 1− g3Mt3β

a3D
. Therefore

the above equation now becomes

äD
aD

=
g3
Mt

3β

a3
D

β(β − 1)

t2
+

(
1− g3

Mt
3β

a3
D

)
α(α− 1)

t2

+2
g3
Mt

3β

a3
D

(
1− g3

Mt
3β

a3
D

)(
β

t
− α

t

)2

. (7.5)

From this equation we see that the global acceleration vanishes at times given
by

t3βa3
D =

1

4 (β − α) g3
M

[(3β − α− 1)

±
√

(3β − α− 1)2 + 8α (α− 1)

]
. (7.6)

This shows us that we get real time solutions for α ≥ 1
3

[
(β + 1) + 2

√
2β (1− β)

]
.

If we now consider β = 0.5 (its lowest possible value) then we get α ≥ 0.971404521

and if we consider β = 0.66 (its highest possible value) then we get α ≥ 0.999950246.
Hence as stated earlier, for a particular value of β we have a lower limit on the
value of α.

In Fig. 7.1, for αj < 1 the acceleration becomes negative in the future for both
cases of partitioning (curves (i) and (ii)). The acceleration reaches a greater value
and at a slightly later time when D is partitioned into 100 overdense and under-
dense subdomains (curve (ii)) and also becomes negative at an earlier time as
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compared to the case where D is partitioned into 50 overdense and underdense
subdomains (curve (i)). When αj > 1 then we see that the acceleration curves for
the two cases are almost identical, with the maximum value being very slightly
larger for partition type (i) (curve (iii)). After reaching the maximum the accel-
eration decreases and goes asymptotically to a small positive value. When αj < 1

then the first two terms of (7.2) are negative, but the last term, which is always
positive, gains prominence as the number of subdomains increases thus increasing
the acceleration. When αj > 1 then only the first term in (7.2) is negative and
hence the acceleration curves for the two partition cases (curves (iii) and (iv)) are
very similar, the only visible difference being the slightly higher maximum value
when D is partitioned into a lower number of subdomains.

In Fig. 7.2 we have illustrated the behaviour of the global acceleration by taking
narrow and broad ranges of values of βJ and keeping αj < 1 and the same for all
the curves. As seen in Fig. 7.1 here also the acceleration becomes negative in the
future for all the curves because we have αj < 1 for all of them, but we see that
the difference between the acceleration curves for the two partition cases is very
small when we consider a narrow range of values of βj (curves (i) and (ii)) and
the difference increases considerably when we consider a broad range of values of
βj (curve (iii) and (iv)). The acceleration attains a much greater value when D is
partitioned into a larger number of subdomains and also becomes negative quicker.
The reason for the latter behaviour is that the broad range of values of βj makes
the third term in (7.2) gain more prominence when we consider a larger number
of subdomains thus resulting in greater positive acceleration.

A similar comparison of the backreaction for the two models is presented in
Figs. 7.3 and 7.4 where we have plotted the backreaction density for the duration
over which the global acceleration is positive. We see in these figures that the
backreaction density is negative and from the expression of ΩDQ and (5.8) it can be
seen that the backreaction will be dominated by the variance of the local expansion
rate θ. In Fig. 7.3 we see that for αj < 1, the backreaction density reaches a
minimum, which is also greater in magnitude, for partition type (ii) (curve (ii)) as
compared to partition type (i) (curve (i)). For αj > 1 the curves for the two cases
are almost identical, the only difference being that for partition type (i) (curve (iii))
the backreaction density reaches a minimum of greater magnitude. In Fig. 7.4 we
see that, just like the acceleration curves, the difference between the backreaction
plots for the two partition cases is much smaller when we consider a narrow range



7.2. DISCUSSIONS 93

0

1

2

3

4

5

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
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vs. t/t0 for various numbers of subdomains. In all the
curves we have αj in the range 0.990 − 0.999, and βj in the range 0.58 − 0.60.
For curve (i) we consider 100 overdense and underdense subdomains, in (ii) 400
overdense and underdense subdomains and in (iii) 500 overdense and underdense
subdomains each.

of values of βj, but the difference becomes quite large when we consider a broad
range of values of βj. The behaviour of the backreaction as illustrated in Figs. 7.3
and 7.4 is quite similar to the global acceleration, as seen in Figs. 7.1 and 7.2, and
that is expected because from (5.8) we see that QD is linearly proportional to the
global acceleration.

In order to see how the global acceleration behaves based on the number of
subdomains we have in Fig. 7.5 plotted the global acceleration vs. time for three
partition cases where we consider (i) 100 overdense and underdense subdomains,
(ii) 400 overdense and underdense subdomains and (iii) 500 overdense and under-
dense subdomains each. For all three cases we have kept the range of values of αj
and βj the same and taken αj < 1. It is clearly seen from the plot that the global
acceleration increases in magnitude as the number of subdomains increases, and
the maximum is obtained later in time with increase in the number of subdomains.
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We also see that the acceleration becomes negative faster when the number of
subdomains increases.

7.3 SUMMARY

To summarize, in this work we performed a detailed analysis of the various aspects
of the future evolution of the presently accelerating universe in the presence of
matter inhomogeneities. The effect of backreaction from inhomogeneities on the
global evolution is calculated within the context of the Buchert framework by
considering the universe to be divided into multiple underdense and overdense
domains, each evolving independently, in order to recreate the real universe more
accurately [40, 41, 53, 50]. We analyzed the future evolution of the universe
using the Buchert framework by computing the global acceleration and strength of
backreaction. We showed that the Buchert framework allows for the possibility of
the global acceleration vanishing at a finite future time, provided that none of the
subdomains accelerate individually (both αj and βj are less than 1).

Our analysis shows that if the βj parameters as distributed over a narrow range
of values and αj < 1 then the global acceleration reaches a greater maximum,
when the number of subdomains is larger, showing that the last term in (7.2),
which is always positive, has more prominence for a large number of subdomains.
This difference between the accelerations for the two partition cases decreases
even more when αj > 1, because then only the first term in (7.2) has a negative
contribution. However when we consider a broad range of values of βj then the
difference between the accelerations for the two cases becomes much larger, the
acceleration being greater for a larger number of subdomains. The cause for this
is attributed to the dominance of the third term in (7.2) when we have a larger
number of subdomains and a broad range of values of βj. We also saw that the
behaviour of the backreaction mimics the behaviour of the global acceleration, and
that is expected because as seen from (5.8), we have QD linearly proportional to
the acceleration.

Our results indicate that backreaction can not only be responsible for the current
accelerated expansion, as shown in earlier works [43, 50], but can also cause the
acceleration to slow down and even lead to a future decelerated era in some
cases. In drawing this conclusion it was not necessary for us to assume that the
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current acceleration is caused by backreaction, and the acceleration could have
been caused by any other mechanism [4].



CHAPTER 8

CONCLUSIONS

The current accelerated expansion of the Universe is one of the most important
unsolved problems in modern cosmology and physicists are coming up with ever in-
novative ideas to explain the nature of Dark Energy, the component of the Universe
that is said to cause the acceleration. There are a wide variety of theories [4] that
cover a broad spectrum of approaches. The ideas started with scalar field models
of dark energy, shifting to modifying the framework of gravity in order to explain
the phenomenon, and new ideas are being proposed regularly. The most simple
explanation for the current acceleration is offered by the cosmological constant,
which has a constant energy density and an equation of state of −1, and which
is consistent with several important observations such as the redshift of distant
supernovae, the power spectrum of the CMB, and the distribution of the large scale
structure. But there are several problems associated with this approach [3], most
notable of them being the cosmological constant problem and the cosmic coincidence
problem. Therefore despite the simplicity of the above approach alternate ideas
are being proposed to explain the acceleration and these theories almost always
present a dynamic dark energy component, one whose energy density and equation
of state varies with time. Since our current observational data are quite favourable
towards the presence of a cosmological constant type term today, therefore any
dynamically evolving contribution must resemble a cosmological constant today.

There are several scalar field based models that try to explain the phenomenon
of dark energy and in this thesis we have discussed about the k-essence scalar
field approach. The distinguishing feature of k-essence is that the Lagrangian of
the scalar field contains non-canonical kinetic terms. It is widely believed that
the early Universe went through a period of rapid accelerated expansion which is
known as “inflation” and since accelerated expansion is a common feature in the
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both the early and the late Universe it is plausible that some common mechanism
could be responsible for both. Several models have been constructed to explain
inflation and dark energy using a single scalar field. Dark matter figures as the
majority of matter in the Universe and its true nature is also unknown to us. Since
the nature of both dark matter and dark energy are unknown, it is plausible that
these two mysterious components of the universe are the manifestations of a single
entity. Several examples of attempts to unify dark matter and dark energy can
be found in the literature. An important subset of models of k-essence is purely
kinetic k-essence, where the Lagrangian of the scalar field depends only on the
kinetic component and does not explicitly depend on the field itself. We have been
able to show that using a purely kinetic k-essence model it is not possible to unify
dark energy and dark matter using the most simple unification scheme. However
it did not rule out the possibility of exploring other avenues in order to achieve a
unification using purely kinetic k-essence.

In our work with k-essence we were able to unify inflation, dark energy and
dark matter using a single scalar field. In the first model that we presented the in-
flation in the early Universe was identical to that obtained from a standard chaotic
inflation model involving a quadratic potential. At the end of inflation when the po-
tential in our model became negligible in comparison to the kinetic component we
were able to approximate the model as purely kinetic k-essence. We found that the
resultant energy density contained terms that achieved the unification of dark mat-
ter and dark energy, the dark energy component being identical to a cosmological
constant. In our other model based on k-essence we also tried to achieve a triple
unification like in the first model, but in this case inflation in the early Universe
was produced through the process of k-inflation. Although in both models we were
able to obtain accelerated expansion in the late Universe with a scalar field but our
models also had the fine tuning problem associated with the cosmological constant.
Despite these problems both models demonstrated how k-essence, especially using
the features of purely kinetic k-essence, can be used to not only explain dark energy
but at the same time inflation and dark matter as well, a triple unification that had
not been done before. The form of the potential chosen for the first model, though
widely used for its simplicity, is not very realistic and only serves to highlight the
features of the model during the inflationary era. Recent WMAP data analysis [68]
suggest that the best fit potential for inflation is a trinomial potential and further
study of our model could be made by using such a potential. We also saw that in
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the second model gravitational reheating was not able to produce sufficiently high
temperatures after inflation was over in order to have a successful nucleosynthesis.
There have been some recent studies which indicate that very low reheating tem-
peratures could also be a viable option for a successful nucleosynthesis [71]. These
ideas have to be analyzed in detail in the context of k-essence scenarios in order
to check how far gravitational reheating could be successful in our model. Further
the k-essence Lagrangian used in our models is certainly a simple example of a
Lagrangian with a non-canonical kinetic term and it will be possible to generalize
it and create a more broad class of k-essence models with rich features. Some work
in this regard has already been done in [81].

It is well known from observations that our Universe is inhomogeneous up to at
least the scales of super clusters of galaxies and has a rich variety of structure in it.
But the standard Big Bang model of the Universe, although quite successful, is based
on the assumption of homogeneity and isotropy. It has been realized that a modi-
fication of the standard cosmological framework is required in order to account for
the presence of inhomogeneities, and this realization has lead to investigation of
the question of how backreaction originating from density inhomogeneities could
modify the evolution of the universe as described by the background FRW metric
at large scales. The main obstacle to this investigation is the difficulty of solving
the Einstein equations for an inhomogeneous matter distribution and calculating
its effect on the evolution of the Universe through tensorial averaging techniques.
Many approaches have been proposed to calculate the effects of inhomogeneous
matter distribution on the evolution of the Universe. In this thesis we have focused
on the approach proposed by Buchert [40, 53]. It has been shown that backreaction
from inhomogeneities from the era of structure formation could lead to an acceler-
ated expansion of the Universe. This is exciting because if this turns out to be true
then we can explain dark energy and the current accelerated expansion of the Uni-
verse without taking recourse to exotic scalar fields or modifying Einstein’s theory
of gravity, but by only refining our current cosmological framework. The Buchert
framework also shows that we can describe the effects of inhomogeneities with
the help of an effective scalar field called the morphon. This is an interesting result
and it shows that we can interpret all existing scalar field models as originating
from the effects of inhomogeneities. Although the original work by Buchert et. al.
showed that the morphon was a traditional scalar field like quintessence, we have
been able to show that the morphon can even be taken to behave as a k-essence
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field. Thus the morphon provides a realistic source for all the various scalar field
models of dark energy. The impact of inhomogeneities on observables of an overall
homogenous FRW model has been debated in the literature. Similar questions have
also arisen with regard to the magnitude of backreaction modulated by the effect
of shear between overdense and underdense regions. Nevertheless arguments in
favour of backreaction seem rather compelling. While upcoming observations may
ultimately decide whether backreaction from density inhomogeneities drives the
present acceleration, the above studies have highlighted that backreaction could
be a crucial ingredient of the present evolution and future fate of our Universe.

Most of the work that has been done on dark energy focuses on how the current
acceleration occurs, whether that work is based on scalar fields or backreaction.
In our work on backreaction instead of going in this direction, we have tried to
explore how dark energy and the current acceleration will behave in the future.
The presently accelerating epoch dictates the existence of an event horizon since
the transition from the previously matter dominated decelerating expansion. Since
backreaction is evaluated from the global distribution of matter inhomogeneities,
the event horizon demarcates the spatial regions which are causally connected to
us and hence impact the evolution of our part of the Universe. Any contribution
from inhomogeneities of scales which cross outside the event horizon due to ac-
celerated expansion, needs to be excluded while computing the overall impact of
backreaction. Such an approach has remained unexplored in previous studies of
backreaction. Using a simple two-scale model we were able to show that backre-
action with the event horizon could lead to a surprising possibility of transition to
another decelerated future era. In our work we explored two different approaches
on including the effect of the event horizon in the future evolution of the Universe,
within the Buchert framework, and in both cases we got the same qualitative result
which showed a future deceleration. We also compared this case with the evolution
of the Universe as obtained from the unmodified Buchert framework and here also
we found that there is a slowing down of the current acceleration in the future, but
the rate of deceleration was faster when the event horizon was considered in our
calculations. We also made an extension of our previous study by considering the
Universe to be divided into multiple subdomains, and let each subdomain evolve
independently of each other, with the aim of recreating the real Universe much
better than in our previous model, and then studied the impact of backreaction in
the future evolution of the Universe. Here our overall conclusion was that as the
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number of subdomains increased the rate of deceleration increased although the
magnitude of the maximum value of acceleration also increased correspondingly.

We have worked exclusively with the Buchert framework for studying the effect
of backreaction on the evolution of the Universe, but there is some debate on the
approach taken in this framework whereby the average of scalar quantities are
computed on a space-like hypersurface, as compared to taking the average on the
past light cone. The usefulness of the expansion rate averaged on any hypersurface
is determined by relating it to observed quantities. It has been observed that the
redshift and distance can be expressed in terms of the average geometry alone,
provided that the contribution of the null shear is negligible [76]. The task of
developing a procedure for light cone averaging is an ambitious programme and till
date there is no standard formalism to do so. In a recent paper, three different types
of light cone averaging have been proposed [79], though much work remains to be
done in order to apply their technique to the problem of cosmic acceleration. In our
work with backreaction that dealt with the event horizon we were able to introduce
an element of light cone physics from another perspective by considering the effect
of inhomogeneities from only those regions present within the event horizon. But
much work remains to be done in equating current observed parameters with those
obtained from backreaction frameworks no matter which framework is chosen.
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